ADVERTISEMENT

Refractive Outcomes for Cataract Surgery With Toric Intraocular Lenses at a Veterans Affairs Medical Center

Federal Practitioner. 2020 March;37(3)a:138-142
Author and Disclosure Information

Background : Refractive outcomes for cataract surgery with toric intraocular lenses (IOLs) are not well described in a teaching hospital setting. This study investigated the refractive outcomes of cataract surgery with toric IOLs at an academic-affiliated Veterans Affairs Medical Center (VAMC) and compared the accuracy of 2 biometric formulae for toric IOL power calculation.

Methods: A retrospective chart review of patients who received cataract surgery with toric IOLs from November 2013 to May 2018 was conducted. The Holladay 2 and Barrett toric IOL formulae were used to predict the postoperative refraction for each cataract surgery. The main outcome measures were best-corrected visual acuity (BCVA) and the difference in cylinder between the preoperative and postoperative manifest refractions. The accuracy of each biometric formula was also assessed using 2-tailed t tests of the mean absolute error, and subgroup analyses were conducted for short, medium, and long eyes.

Results: Of 325 charts reviewed, 283 patients met the inclusion criteria; 87% (248/283) of these surgeries were performed by resident surgeons. The median postoperative BCVA was 20/20, and 92% of patients had a postoperative BCVA of 20/25 or better. There was no statistically significant difference in mean absolute error between the 2 formulae for the entire axial length range ( P = .21), as well as the short ( P = .94), medium ( P = .49), and long axial length ( P = .08) groups.

Conclusions: To our knowledge, this is the largest study that compared the performance of the Barrett toric and Holladay 2 formulae and the first that made the comparison in a teaching hospital setting. This study suggests that the 2 formulae have similar refractive outcomes across all axial lengths.

Results

Of 325 charts reviewed during the study period, 34 patients were excluded due to lack of postoperative refraction within the designated follow-up period, 5 for worse than 20/40 postoperative BCVA (4 had preexisting ocular disease), 2 for complications, and 1 for missing data. We included 283 eyes from 283 patients in the final study. Resident ophthalmologists were the primary surgeons in 87.6% (248/283) of the cases.

The median postoperative BCVA was 20/20, and 92% of patients had a postoperative BCVA of 20/25 or better. The prediction outcomes of the toric SN6AT IOLs are shown in Table 2. The Barrett toric formula had a lower MAE than the Holladay 2 formula, but this difference was not statistically significant. The Barrett toric formula also predicted a higher percentage of eyes with postoperative refraction within ≥ 0.25 D (53.2%), ≥ 0.5 D (77.3%), and ≥ 1.0 D (96.1%). For both formulae, > 95% of eyes had prediction errors that fell within 1.0 D.

While the Barrett formula demonstrated a lower MAE in all 3 AL groups, no statistically significant differences were found between the Barrett and Holladay formulae (P = .94, P = .49, and P = .08 for short, medium, and long eyes, respectively). Both formulae produced the lowest MAE in the long AL group: Barrett had a MAE of 0.221 D and Holladay 2 had one of 0.329 D. The Barrett formula produced its highest percentage of eyes with prediction errors falling within 0.25 D and 0.5 D in the long AL group. In comparison, both formulae had the highest MAEs in the short AL group (Barrett toric, 0.598 D; Holladay 2, 0.613 D) and produced the lowest percentage of eyes with prediction errors falling within ≥ 0.25 D and ≥ 0.5 D in the short AL group.

A cumulative histogram of the preoperative corneal and postoperative refractive astigmatism magnitude is shown in Figure 1. The same data are presented as double-angle plots in the Appendix, which shows that the centroid values for preoperative corneal astigmatism were greatlyreduced when compared with the postoperative refractive astigmatism (mean absolute value of 1.77 D ≥ 0.73 D to 0.5 D ≥ 0.50 D).

Preoperative corneal astigmatism and postoperative refractive astigmatism were compared since preoperative refractive astigmatism has noncorneal contributions, including lenticular astigmatism, and there is minimal expected change between preoperative and postoperative corneal astigmatism.14 For comparison, double-angle plots of postoperative refractive astigmatism prediction errors for the Holladay and Barrett formulae are shown in Figure 2.

    

Discussion

To our knowledge, this is the largest study of resident-performed cataract surgery using toric IOLs, the largest study that compared the performance of the Barrett toric and Holladay 2 formulae, and the first that compared these formulae in a teaching hospital setting. This study found no significant difference in the predictive accuracy of the Barrett and Holladay 2 biometric formulae for cataract surgery using toric IOLs. In addition, our refractive outcomes were consistent with the results of previous toric IOL outcome studies conducted in teaching and nonteaching hospital settings.6,10-13