Master Class

Robot-Assisted Laparoscopic Tubal Reanastomosis


A dilute solution of vasopressin is injected into the mesosalpinx in order to decrease blood loss during mobilization of the proximal and distal tubal segments. Potts scissors and micro-bipolar graspers are used to mobilize tubal segments and to deperitonealize the edges of the mesosalpinx. Even though we have bipolar electrocautery (micro-bipolar forceps) at our disposal, we employ it sparingly to avoid occult thermal damage to the tubal epithelium.

A graduated-tip ERCP (endoscopic retrograde cholangiopancreatography) cannula (Contour 3-4-5 Tip ERCP Cannula, Boston Scientific, Natick, Mass.) is inserted through the fimbriated end of the distal tubal segment; it exits through the newly opened proximal lumen of this distal segment and enters the newly created opening of the proximal tubal segment. This stent provides anatomic orientation and helps to identify the tubal lumen.

Preparation of the tubal edges and placement of the ERCP cannula are performed with the assistance of chromopertubation. It is particularly important to note abundant spillage of indigo carmine solution when the proximal tubal stump is opened.

From this point in the operation, the main role of the robotic ProGrasp operated through port 3 is to hold the ERCP cannula in place, thereby providing a steady and reliable stent.

The second stage of the procedure involves the suturing of the proximal and distal tubal stumps together (

Once the reapproximation is complete, the ERCP catheter is removed from the tube and immediately removed from the abdominal cavity, and prompt fill and spill of indigo carmine is observed, indicating patency. The same procedure is performed on the contralateral side, with great care taken to avoid inadvertently damaging the delicate reanastomosis line in the first tube.

This procedure invariably involves minimal or no blood loss. We gently irrigate the pelvis at regular intervals during the case to avoid desiccation, and carefully remove any small blood clots that may form. We do not employ any other adhesion-prevention strategies.

Patients leave the hospital within 3 hours of surgery and expect complete recovery within 2 weeks. Pelvic rest is recommended for the first month after surgery, and contraception is recommended until after their hysterosalpingogram 2 months after surgery.

A 'Swift Learning Curve'

Robotic assistance allows easy performance of classic microsurgical reanastomosis through laparoscopic access. Aside from shorter recovery time and a lower chance of complications, the robotic approach does not provide major clinical advantages over classic minilaparotomy. However, having performed and taught all three types of tubal reanastomosis (classic microsurgical, laparoscopic, and robot-assisted laparoscopic), I have been impressed by a unique quality of robotic reanastomosis: its eminent reproducibility and swift learning curve.

The enabling nature of robotic technology makes tubal reanastomosis a perfect example of an operation that is more safely learned and performed robotically. At our institution, we have developed a protocol for fast-track teaching of robot-assisted laparoscopic tubal reanastomosis that involves several hours of inanimate training at the console to get familiar with microrobotic instruments and sutures, as well as a chance to assist on these cases at bedside.

This is followed by an intensive use of Telestration, a technology specific to the da Vinci surgical system that greatly improves communication between the teacher and apprentice during surgery. The apprentice sits at the console while the attending surgeon remains by his/her side and communicates precise instructions by direct verbal cues and by drawing on a dedicated monitor that shows the operator's right field of vision. The drawings are transmitted in real time to the console, where they superimpose on the operator's visual field so that he/she may incorporate them into the current surgical act.

Aside from the expected differences in speed of performance, the quality and the safety of the operations performed by the teacher and the apprentice are absolutely comparable even on the first case. Coupled with a simple teaching strategy, robotic technology thus dramatically shortens the learning curve of a complex microsurgical operation. It is hard to deny the value of a procedure that can be safely taught and reliably reproduced in a single session.

The Ultimate Microsurgical Procedure

For this current excerpt of Master Class in Gynecologic Surgery, I have solicited the expertise of Dr. Antonio Rosario Gargiulo. Dr. Gargiulo is an assistant professor of obstetrics, gynecology, and reproductive biology at Harvard Medical School, Boston. He is also the director of robotic surgery at the Center for Infertility and Reproductive Surgery at Brigham and Women's Hospital in Boston. After completing his subspecialty training in reproductive endocrinology and infertility at Brigham and Women's Hospital, Dr. Gargiulo rapidly built a busy reproductive surgery practice and has become a well-known expert in minimally invasive gynecologic surgery. Since 2007, Dr. Gargiulo has worked in robot-assisted reproductive surgery, and he performed the first robotic tubal anastomosis in New England. It is a pleasure to watch such a young and gifted surgeon successfully and safely pushing the envelope in gynecologic robot-assisted microsurgery.

Next Article: