Ensuring Safe Laparoscopic Access
With very thin patients, use less force, as the distance from the abdominal wall to retroperitoneal structures is closer, and injuries from hitting the posterior retroperitoneum are more likely.
There are various methods to ensure that the initial entry into the peritoneal cavity is correct and that no injury occurs. None of these methods is foolproof. I most often use a radially dilating trocar inserted over a Veress needle. It is inserted initially with the valve open, so that air can enter and open up the potential space. Then, I inject saline and assess whether it flows easily. Next, I aspirate, checking for blood, feces, or saline from the subcutaneous space. I add a drop of saline as I lift up on the abdominal wall to perform the hanging-drop test. None of these maneuvers has good sensitivity or specificity.
The single most useful test to confirm correct intraperitoneal placement is the observation of low entry pressure from the carbon-dioxide gas. The observation of an initially negative pressure with elevation of the abdominal wall is reassuring as well. Some surgeons prefer to increase distention pressure for subsequent trocar placement.
Another method I sometimes use involves direct entry with a microlaparoscope. Insert a Veress needle with a 2-mm or 3-mm trocar over it and directly look inside with a 2-mm or 3-mm laparoscope before insufflation. In this method, elevation of the abdominal wall by hand is crucial for visualization.
Patients with a history of surgery may have adhesions at or near the umbilicus. Although various alternative sites have been suggested, the one that provides the lowest-risk access in the majority of patients is the left upper quadrant at Palmer's point, the midclavicular line below the left lowermost inferior rib. In almost all patients, even those who've had many previous surgeries, this area will be free of adhesions.
This entry site is close to the stomach, so make sure the anesthesiologist has suctioned stomach contents before surgery. Splenomegaly could complicate entry at this site.
At this site the abdominal wall is much thicker, and you will lose the typical feel of an umbilical entry. Go in carefully and in a completely controlled manner with an adjusted angle of entry. I prefer to use a microlaparoscopic entry here, although some surgeons use a Veress needle and trocar.
The open-entry technique—also called the Hasson technique—was developed in the early 1970s to mimic the steps of entry during an open surgery but with a 10-mm incision. The surgeon makes an incision in the umbilicus and dissects down layer by layer until the peritoneum is entered. The fascia is often tagged with sutures for elevation, and a blunt-tipped trocar is inserted.
The benefit of this approach is that it eliminates the step of blindly inserting something into the abdominal cavity. The drawback is that cutting and dissecting can still cause injury to underlying or adherent vital structures and may result in larger injuries in these cases.
Bowel injuries from adhesions have been reported with all known techniques.
Obviously, it would be helpful to know which technique is safest based on a well-designed, randomized, controlled trial, as most experts believe injuries from all techniques are underreported. However, significant injuries are so rare that one study reported a power analysis indicating that it would require more than 200,000 surgeries to show a 50% reduction in injuries. Most reports suggest that visceral injuries (primarily bowel injuries) occur less than 1% of the time with either an open- or closed-entry technique. A study from the Netherlands found no statistical difference between the two techniques.
Vascular injuries are even rarer than that. Advocates of open techniques suggest fewer vascular injuries occur with these techniques, but not statistically significantly so.
Recently, new trocars have been introduced that are aimed at improving safety. These devices include optical and radially dilating trocars and trocarless systems that screw or dilate their way into the abdomen. As these have come into more widespread use, injuries have been reported with them as well. It remains to be seen whether injury rates will decline significantly with other new alternatives.
Complications of laparoscopic surgery can occur when bowel or vascular injuries go unrecognized at the time of surgery. Vascular injuries can cause hemorrhage and hemodynamic instability. Retroperitoneal hematomas, in particular, can be missed unless the surgeon inspects for the presence of a large, expanding mass.
Bowel injuries may be difficult to see if the injury is small. Urinary tract injuries can also be subtle. Detection of these complications requires diligent postoperative follow-up and instructions to the patient that she should report postoperative fever, increasing pain, abdominal distention, vomiting, or heavy incisional bleeding. Be suspicious if any patient is not recovering as quickly as expected. Although most of us would recognize complications occurring within 24 hours, signs may not appear for up to a week after the procedure. Some patients with bowel perforation had no elevations in white blood count or fever at their initial postoperative checkups. The most serious complications have occurred when injuries went unrecognized.