Advantages of Open Sacrocolpopexy With Decreased Morbidity
Using this configuration, we have reduced any competition between the two left robotic arms while we operate either in the pelvis or at the sacrum.
Some surgeons place the camera port higher (above the umbilicus), but I do not care for this placement because it can partially impede the view over the sacral promontory. (Placement of the camera port above the umbilicus is necessary for enlarged uteri, however.) After initial entry, a 0-degree scope should be used to place the other ports.
It is important to maintain at least 10 cm between robotic ports, and at least 6 cm between the robotic port and the assistant's port to reduce external collision of the robotic instrument arms.
Before docking the robotic arms of the patientside cart and placing the various EndoWrist instruments, I laparoscopically remove any small-bowel adhesions or other abdominal wall adhesions. This way, I have the tactile sensation that robotics does not provide. I then retract the sigmoid and move the small bowel out of the pelvis to expose the sacrum and the sacral promontory.
At this point and still prior to docking, it is also important to identify the ureters, the sacral promontory, the midline with the sigmoid retracted, the middle sacral vessels, and the iliac vessels. The left common iliac vessels, particularly the vein, can occasionally be identified crossing very close to the sacral promontory.
The operating table should be lowered and the patientside cart should be positioned as high as possible to clear the patient's legs, and then—after all overhead lights and equipment are moved to the side—the cart can be rolled into position between the patient's legs and aligned in a straight line with the camera arm and umbilical camera port. Docking can then be easily accomplished.
Open communication with the anesthesiology team is important. Robotic sacrocolpopexy is associated with significantly less blood loss (typically less than 25 mL) and less insensible loss than is open sacrocolpopexy. Therefore intravenous fluids should generally be limited to a liter or less.
Surgical Steps
If the patient has uterine prolapse, this can be addressed first with a supracervical or total hysterectomy. I prefer supracervical hysterectomies, assuming that the patient's Pap smears have been normal, in an attempt to reduce the risk of mesh erosion. After the hysterectomy, I place the uterus along the left lateral gutter for morcellation at the end of the procedure and after the system is undocked.
With either type of hysterectomy, the use of a colpotomy ring—either a KOH cup or a VCARE device—works nicely. We find this helpful in manipulating the uterus and defining the cervical-vaginal junction, even during supracervical hysterectomies, because it helps in the dissection of the bladder flap.
After the bladder flap is dissected off the anterior vaginal wall (close to the anterior vaginal wall to avoid cystotomy and to identify the avascular plane), the rectovaginal septum is developed. Approximately 6-8 cm of anterior vaginal wall are exposed.
The placement of round, 31- to 33-mm EEA (end-to-end anastomosis) sizers in the vagina to manipulate the vaginal apex helps with the bladder flap dissection, which can be challenging in patients who have had a previous cesarean section, hysterectomy, or vaginal reconstructive procedure—especially those performed with vaginally placed mesh. Occasionally, the bladder is found densely adherent over the apex of the vagina and adherent to the proximal posterior vaginal wall.
I frequently have an additional, smaller (29-mm) sizer placed in the rectum to help clearly identify the rectovaginal septum and facilitate the dissection.
During the rectovaginal dissection, the vaginal EEA sizer should be oriented anteriorly to better expose the posterior vaginal wall. Between 6 cm and 10 cm of the posterior vaginal wall should be dissected, while the camera is kept at midline and oriented to the horizon.
At this point, I frequently switch to a 30-degree down scope to develop the presacral space. This enables me to see over the sacral promontory and enhances my view. Depending on the configuration of the sacrum, it is possible to complete the surgery with a 0-degree scope. However, the view of the presacral space is generally significantly improved with the 30-degree down scope.
The sigmoid is retracted laterally by the third operative arm, and the peritoneum is lifted up, or tented, over the sacrum in the midline to avoid injury to a vessel. Our goal is to identify the anterior longitudinal ligament, and this area can be fairly vascular. Once the anterior longitudinal ligament is identified, the presacral peritoneal dissection can be extended inferiorly to the vagina.