ADVERTISEMENT

Electronic Order Volume as a Meaningful Component in Estimating Patient Complexity and Resident Physician Workload

Journal of Hospital Medicine 13(12). 2018 December;829-835. Published online first August 29, 2018. | 10.12788/jhm.3069

BACKGROUND: Though patient census has been used to describe resident physician workload, this fails to account for variations in patient complexity. Changes in clinical orders captured through electronic health records may provide a complementary window into workload. We aimed to determine whether electronic order volume correlated with measures of patient complexity and whether higher order volume was associated with quality metrics. METHODS: In this retrospective study of admissions to the internal medicine teaching service of an academic medical center in a 13-month period, we tested the relationship between electronic order volume and patient level of care and severity of illness category. We used multivariable logistic regression to examine the association between daily team orders and two discharge-related quality metrics (receipt of a high-quality patient after-visit summary (AVS) and timely discharge summary), adjusted for team census, patient severity of illness, and patient demographics.
RESULTS: Our study included 5,032 inpatient admissions for whom 929,153 orders were entered. Mean daily order volume was significantly higher for patients in the intensive care unit than in step-down units and general medical wards (40 vs. 24 vs. 19, P < .001). Order volume was also significantly correlated with severity of illness (P < .001). Patients were 12% less likely to receive a timely discharge summary for every 100 additional team orders placed on the day prior to discharge (OR 0.88; 95% CI 0.82-0.95).
CONCLUSIONS: Electronic order volume is significantly associated with patient complexity and may provide valuable additional information in measuring resident physician workload.

Statistical Analysis

To examine how the order volume per day changed throughout each sequential day of hospital admission, mean orders per hospital day with 95% CIs were plotted. We performed an aggregate analysis of all orders placed for each patient per day across three different levels of care (ICU, step-down, and general medicine). For each day of the study period, we summed all orders for all patients according to their location and divided by the number of total patients in each location to identify the average number of orders written for an ICU, step-down, and general medicine patient that day. We then calculated the mean daily orders for an ICU, step-down, and general medicine patient over the entire study period. We used ANOVA to test for statistically significant differences between the mean daily orders between these locations.

To examine the relationship between severity of illness and order volume, we performed an unadjusted patient-level analysis of orders per patient in the first three days of each hospitalization and stratified the data by the MS-DRG payment weight, which we divided into four quartiles. For each quartile, we calculated the mean number of orders placed in the first three days of admission and used ANOVA to test for statistically significant differences. We restricted the orders to the first three days of hospitalization instead of calculating mean orders per day of hospitalization because we postulated that the majority of orders were entered in these first few days and that with increasing length of stay (which we expected to occur with higher MS-DRG weight), the order volume becomes highly variable, which would tend to skew the mean orders per day.

We used multivariable logistic regression to determine whether the volume of electronic orders on the day of a given patient’s discharge, and also on the day before a given patient’s discharge, was a significant predictor of receiving a high-quality AVS. We adjusted for team census on the day of discharge, MS-DRG weight, age, sex, and insurance status. We then conducted a separate analysis of the association between electronic order volume and likelihood of completing a timely discharge summary among patients where discharge summary data were available. Logistic regression for each case was performed independently, so that team orders on the day prior to a patient’s discharge were not included in the model for the relationship between team orders on the day of a patient’s discharge and the discharge-related quality metric of interest, and vice versa, since including both in the model would be potentially disruptive given that orders on the day before and day of a patient’s discharge are likely correlated.

We also performed a subanalysis in which we restricted orders to only those placed during the daytime hours (7 am-7 pm), since these reflect the work performed by the primary team, and excluded those placed by covering night-shift residents.

IRB Approval

The study was approved by the UCSF Institutional Review Board and was granted a waiver of informed consent.

Online-Only Materials

Attachment
Size