ADVERTISEMENT

Electronic Order Volume as a Meaningful Component in Estimating Patient Complexity and Resident Physician Workload

Journal of Hospital Medicine 13(12). 2018 December;829-835. Published online first August 29, 2018. | 10.12788/jhm.3069

BACKGROUND: Though patient census has been used to describe resident physician workload, this fails to account for variations in patient complexity. Changes in clinical orders captured through electronic health records may provide a complementary window into workload. We aimed to determine whether electronic order volume correlated with measures of patient complexity and whether higher order volume was associated with quality metrics. METHODS: In this retrospective study of admissions to the internal medicine teaching service of an academic medical center in a 13-month period, we tested the relationship between electronic order volume and patient level of care and severity of illness category. We used multivariable logistic regression to examine the association between daily team orders and two discharge-related quality metrics (receipt of a high-quality patient after-visit summary (AVS) and timely discharge summary), adjusted for team census, patient severity of illness, and patient demographics.
RESULTS: Our study included 5,032 inpatient admissions for whom 929,153 orders were entered. Mean daily order volume was significantly higher for patients in the intensive care unit than in step-down units and general medical wards (40 vs. 24 vs. 19, P < .001). Order volume was also significantly correlated with severity of illness (P < .001). Patients were 12% less likely to receive a timely discharge summary for every 100 additional team orders placed on the day prior to discharge (OR 0.88; 95% CI 0.82-0.95).
CONCLUSIONS: Electronic order volume is significantly associated with patient complexity and may provide valuable additional information in measuring resident physician workload.

Study Population

Our study population comprised all hospitalized adults admitted to the eight resident-run teams on the internal medicine teaching service. Patients cared for by hospitalist-only teams were not included in this analysis. Because the focus of our study was on hospitalizations, individual patients may have been included multiple times over the course of the study. Hospitalizations were excluded if they did not have complete Medicare Severity-Diagnosis Related Group (MS-DRG) data,12 since this was used as our severity of illness marker. This occurred either because patients were not discharged by the end of the study period or because they had a length of stay of less than one day, because this metric was not assigned to these short-stay (observation) patients.

Data Collection

All electronic orders placed during the study period were obtained by extracting data from Epic’s Clarity database. Our EHR allows for the use of order sets; each order in these sets was counted individually, so that an order set with several orders would not be identified as one order. We identified the time and date that the order was placed, the ordering physician, the identity of the patient for which the order was placed, and the location of the patient when the order was placed, to determine the level of care (ICU, step-down, or general medicine unit). To track the composite volume of orders placed by resident teams, we matched each ordering physician to his or her corresponding resident team using our physician scheduling database, Amion (Spiral Software). We obtained team census by tabulating the total number of patients that a single resident team placed orders on over the course of a given calendar day. From billing data, we identified the MS-DRG weight that was assigned at the end of each hospitalization. Finally, we collected data on adherence to two discharge-related quality metrics to determine whether increased order volume was associated with decreased rates of adherence to these metrics. Using departmental patient-level quality improvement data, we determined whether each metric was met on discharge at the patient level. We also extracted patient-level demographic data, including age, sex, and insurance status, from this departmental quality improvement database.

Discharge Quality Outcome Metrics

We hypothesized that as the total daily electronic orders of a resident team increased, the rate of completion of two discharge-related quality metrics would decline due to the greater time constraints placed on the teams. The first metric we used was the completion of a high-quality after-visit summary (AVS), which has been described by the Centers for Medicare and Medicaid Services as part of its Meaningful Use Initiative.13 It was selected by the residents in our program as a particularly high-priority quality metric. Our institution specifically defines a “high-quality” AVS as including the following three components: a principal hospital problem, patient instructions, and follow-up information. The second discharge-related quality metric was the completion of a timely discharge summary, another measure recognized as a critical component in high-quality care.14 To be considered timely, the discharge summary had to be filed no later than 24 hours after the discharge order was entered into the EHR. This metric was more recently tracked by the internal medicine department and was not selected by the residents as a high-priority metric.

Online-Only Materials

Attachment
Size