ADVERTISEMENT

Inside the operating room—balancing the risks and benefts of new surgical procedures

A collection of perspectives and panel discussion
Author and Disclosure Information

MARKETING OF MEDICINE: IS THERE NO TURNING BACK?

Question from audience: What makes you think that in 10 years there won’t be 100 million obese Americans watching television ads for noninvasive bariatric surgery promising to rid them of their obesity problem? What will keep that from happening?

Dr. Krummel: Nothing. What makes you think it is not happening now? Just look at the ads for the Lap-Band in the lay press.

Dr. Clayman: We already have direct marketing of drugs and direct marketing of facilities. What Joel said is true: “the enemy is us.” When I was in training, the idea that a physician would advertise was considered unethical. I still consider it thus. But everybody is doing it, so should that make it acceptable? I think not.

The same thing is true of the huge amount of money spent marketing drugs on television. Why should a single nickel be spent to advertise health care beyond generically informing the public of important health care issues and initiatives? You cannot go to an airport without seeing a surgical robotics program being advertised or a hospital being advertised. You cannot turn on National Public Radio without hearing well-financed spots touting the achievements of a hospital. You cannot watch television without seeing ads for erectile dysfunction medications or other new drugs. It is a waste of dollars. If we took all of that money and redirected it, we could probably solve much of the indigent health care problem, but we as a society have chosen not to do that. 

SHOULD THE BAR BE RAISED FOR SURGICAL TRIALS?

Dr. Moreno: Let’s consider some additional questions. Why shouldn’t the government raise the bar on the level of evidence needed to gain regulatory approval for new devices? Why not require randomized trials, as is done for drugs?

Dr. Cooper: Procedures that lend themselves to a randomized trial should be studied at a limited number of centers with mandatory reporting and preset indications for promulgation and payment. I believe that universities have been derelict in their duty to require this level of evidence.

This question is always nuanced, however. Consider the case of laparoscopic procedures. They offer the advantage of smaller incisions, yet how many patients have had to die or suffer serious consequences for the sake of these smaller incisions? On the other hand, how many patients may have been saved from pulmonary embolism, wound infections, or a prolonged hospital stay as a result of laparoscopic techniques? Only a randomized trial could demonstrate whether or not there has been an overall payback from new procedures such as this, although even then the payback may be present for some types of patients but not others.

Dr. Schauer: The problem is expense. Perhaps it is all a matter of economics. Return on investment for the drug industry is something like 10 to 1, but return on investment for the medical device industry is generally much lower. Therefore, conducting large randomized controlled trials is extremely expensive and much more complicated for a device or procedure. This may explain why the standard for trials is different for the two industries.

Dr. Krummel: Virtually all fetal surgical procedures have been subjected to a trial, several of them randomized. The National Institutes of Health paid for many of these trials. One such study prevented rapid uptake of the congenital diaphragmatic hernia operation, which has never been proven in a randomized trial to be better than our current therapy. It is a good example of a randomized trial making a difference.

Dr. Clayman: As Joel pointed out, surgery is constantly evolving, whereas a drug remains unchanged throughout its lifespan. If we had started a prospective randomized trial after we had done our first laparoscopic nephrectomy, the procedure would have died because we were not nearly as facile with our first 10 as we were after our first 100. The technology continues to develop, and the surgeon continues to develop his or her skills, which makes a study of this nature overly dynamic. Perhaps the best you can do is a retrospective, matched, controlled study with the same surgeon, comparing his or her results after 40 or 50 laparoscopic procedures with results after his or her 50 most recent open procedures.

Dr. Cooper: How do you put a brake on the system? Would some sort of limited trial perhaps put a brake on the too-rapid promulgation that we often see?

Dr. Clayman: In the general surgery realm, laparoscopic cholecystectomy came out of private practice. It did not come out of the university with its faculty and laboratories dedicated to exploration and investigation. It never was properly vetted in the scientific realm but rather came to the light of day as an “economic” edge.

Dr. Krummel: I would not underestimate the talent and creativity of those that we train who go out into private practice. Much innovation has come from very active practitioners.

Dr. Clayman: Right, but they do not have the infrastructure that we are blessed with at universities both to create and to validate.

Dr. Schauer: I agree that academia does not have a monopoly on creative ideas. But perhaps academia should play a major role in defining validation-type studies. That is one area where we may be especially well suited to meet an important need.

THE INNOVATION-TRAINING INTERFACE

Question from audience: I have a dilemma as a residency program director. Our residents want to learn the new technology—laparoscopic surgery, robotic surgery, etc—but we have them in our program for such a limited time. How do you justify teaching them new technology and at the same time still teach them basic, traditional surgical procedures, especially with the reduction in residents’ hours? It is fine to be able to do a nephrectomy laparoscopically, but if you get in trouble, you still have to know how to do a good open nephrectomy. How do you address this?

Dr. Schauer: I think the answer largely is fellowship training. Emerging procedures probably should be introduced in fellowship programs until they reach the point where they are so standardized that they become a major part of practice. For example, cholecystectomy quickly became part of general surgery practice, but laparoscopic colectomy took several years to evolve and was taught primarily in fellowship or advanced training, after which it gradually filtered down to residency programs.

Dr. Krummel: All of us who are responsible for training are wrestling with this problem. Residents are expected to learn more yet do so in less time. One approach would be early specialization, so that instead of 5 years of general surgery, you would have 3 years of general surgery and then 3 years of, for instance, thoracic surgery. Also, Ralph mentioned earlier the advantage of skills labs. We increasingly see that type of approach as a backbone for providing broad training without putting patients at harm.

As for teaching the use of new technology, first you have to teach the existing base of practicing surgeons. Here again there is much to be said for skills labs, and I give credit to the American College of Surgeons for its drive to establish and accredit centers around the country as a way to teach this base of surgeons.

Dr. Schauer: If I may expand this question beyond residency and fellowship training, how do we balance the desire to share new innovations with our colleagues against the need to temper their desire to prematurely jump into an area where they do not yet really belong? Chris, I know this applies to your challenges in disseminating knowledge about NOTES.

Dr. Christopher Thompson: Yes, courses on NOTES are also being held in conjunction with all the major society meetings, and we are seeing many enthusiastic trainees at these hands-on courses. The original intent was to give attendees instruction on setting up their own animal labs, yet some trainees took it beyond this limited purpose. As a result, some in our field believe that we should not allow foreign physicians to come here to be trained in NOTES, for fear they will go back to their home countries and use it on humans. I am not certain that that approach is the best way to go, but there has been much discussion about how to handle this. It is a real conundrum. Certainly there are a number of surgical residents and gastroenterology fellows who are clamoring to get into the lab right now and learn these techniques.

Dr. Clayman: This goes back to our earlier discussion about from where new technologies should emerge. What frightens me are the consequences of creative activity occurring outside the university, where there are no laboratories or animal or cadaver models for refining or testing a technique. To me, it was frightening to see laparoscopic cholecystectomy suddenly emerge as a craze without the proper animal and clinical studies having been done. That is not the way I believe clinical research should go forward. I once heard a prominent urologic surgeon say at a major surgical meeting, after a presentation on the impact of percutaneous stone surgery on the canine kidney, “Now that I’ve done a thousand of these in humans, it’s reassuring to know that it’s safe to do in dogs.” That is not the way it should happen, and every time it does happen that way, we pay a large price, some of us as individuals and all of us as a society.

Dr. Cooper: The answer therefore is to use our academic facilities to facilitate the training of those in community practice. We should continue to offer training because we have the resources to make it available.

Dr. Clayman: Yes, and this is why I emphasized earlier that support for surgical training centers is so essential. I see all the dollars spent on health care advertising and wonder why these dollars are not instead poured into surgical training, or research facilities, or training simulators.

The way we should train surgeons in new technologies is to train them on simulators equipped with a properly vetted curriculum. This is the future for training, because once you put instruments through small ports, everything becomes measurable—economy of motion, past pointing, and efficiency; simulators with a curriculum will also be able to assess the trainee’s cognitive abilities. When an individual performs well on the simulator, he or she can then come into the operating room and work with surgeons experienced in the procedure. The use of simulators in this manner should ultimately improve the overall quality and safety of each surgical specialty.