Inside the operating room—balancing the risks and benefts of new surgical procedures
Idea to implementation: A personal perspective on the development of laparoscopic nephrectomy
By Ralph V. Clayman, MD
Change in the surgical world involves three aspects, which I refer to as the three Ds: discovery, development, and dissemination. Change requires proof that the new method is superior to the old. When we, as innovators, develop something “new,” I believe that our immediate subsequent task is to do everything we can to prove that this “new” finding is of no value whatsoever before we determine that it is worth advancing.
Getting to Malcolm Gladwell’s tipping point—the act or event after which nothing is ever the same— requires a team of people, usually from different disciplines, coming together to concentrate on a problem, or an individual whose experiences in different fields provides the ability to “see” the next level. In my opinion, one person working in one discipline rarely leads to breakthrough progress in medicine.
These observations about surgical innovation stem largely from my experience in the development of laparoscopic nephrectomy, in which I was privileged to play a role while at Washington University in St. Louis, which I will outline here.
THE HISTORY BEHIND LAPAROSCOPIC NEPHRECTOMY
After doing preliminary work in dogs, the German surgeon Gustav Simon performed the first human nephrectomy in 1869, in a woman with a ureteral vaginal fistula. The operation was a success: it took him 50 minutes to complete the procedure, and 6 months later the patient went home.
From that point in 1869 until 1990, progress in nephrectomy was minimal, with open surgery remaining the gold standard. While the surgeon’s tools remained largely unchanged, the advances that did occur were in anesthesia, analgesia, and antibiotics, which allowed patients to better survive the onslaught of the operation.
In an unrelated arena, laparoscopy was developed in 1901 by another German surgeon, Georg Kelling, who pumped air into the peritoneal cavity of a dog in a successful effort to stop bleeding from the stomach. Within the pneumoperitoneum, Kelling was able to examine the canine organs with a cystoscope at pressures as high as 140 mm Hg. This discovery was not applied clinically, however, until 9 years later when the Swedish gastroenterologist H.C. Jacobeus used Kelling’s pneumoperitoneum concept and a cystoscope to visualize the peritoneal cavity to search for cancer. The technique advanced little in the subsequent decades —apart from Semm’s seminal laparoscopic removal of the appendix in the 1960s—until 1985, when the first laparoscopic gallbladder removal ignited the era of laparoscopic cholecystectomy.
Three technological developments spurred this recent surge in laparoscopy: (1) the ability to affix a camera to the endoscope, (2) the ability to display the camera’s images on a video screen, and (3) the development of self-feeding clip appliers to allow occlusion of vascular or ductal structures.
THE EVOLUTION OF LAPAROSCOPIC NEPHRECTOMY
Discovery
I became interested in the possibility of laparoscopic nephrectomy during the laparoscopic cholecystectomy craze in the late 1980s. At that time, I was working with Dr. Nat Soper, performing laparoscopic cholecystectomies in pigs to show that the procedure could be done safely with electrocautery rather than a laser. As it turns out, the anatomy of the porcine kidney is such that the colonic reflection lies medial rather than lateral to the organ. As such, the kidney is quite visible as soon as one enters the abdomen. Indeed, the kidney seemed to be saying to us, “Hey, what about me? I could come out through that hole too.” That is basically how the idea arose.
So, along with Dr. Lou Kavoussi and many others in our research team, we attempted laparoscopic nephrectomy in the pig and succeeded: the kidney could be removed through a small hole by entrapping it in a sack, breaking it up in the sack, and pulling it out.12 The team involved in this discovery were specialists in urology and general surgery as well as biomedical engineers from industry, specifically a team from Cook Urological led by Mr. Fred Roemer.
After performing this technique numerous times in the laboratory, we reduced the operation’s duration to 90 minutes, at which point we believed the procedure had advanced sufficiently to be considered for clinical use.
Development
The patient we selected for the initial clinical case was an 85-year-old woman with a 3-cm mass in her kidney. She was deemed to be “too sick to operate on,” so she was presented to me as a candidate for the new laparoscopic procedure.
Amazing as it may seem in our current medical climate, at that time (1990) we were faced with the question of whether or not to seek institutional review board (IRB) approval. The argument could be made that since radical nephrectomy had been practiced for 120 years and laparoscopy had been around for nearly 100 years, the combination of these two well-accepted procedures might require nothing more than physician-patient informed consent. However, the concept of “informed consent” in this context was problematic: what could we tell the patient about a procedure that had never been done before except that if it was not working out we would convert to the standard open procedure?
A senior colleague—actually my boss at that time, Dr. Bill Catalona—sagely advised me to get IRB approval, noting, “If the operation works out well, you’ll be fine, but if it doesn’t work out well, they’ll kill you if you don’t have approval.” So we fortunately ended up seeking (and receiving) IRB approval, as well as providing, as best we could, informed consent to the patient and her best friend.
Our next consideration was designating a team member to determine if and when conversion to open surgery would be necessary. We needed a “referee” to aid in objectively determining a point at which we should convert. For our team, that person was Dr. Teri Monk, our anesthesiologist, who had no previous experience with our laboratory work but understood what we were attempting.
So we proceeded with the first clinical laparoscopic nephrectomy on June 25, 1990. The kidney was embolized the morning of the procedure. Five laparoscopic ports were placed. The clip appliers proved too small for renal vein occlusion, so the main renal vein had to be traced to its branches; in total we clipped five separate sets of renal vascular branches. The kidney was ensnared and morcellated, which took 7 minutes. Total operative time was 6.8 hours. The complications that arose were not anticipated:
- Intraoperative oliguria due to the prolonged pneumoperitoneum
- Fluid overload (postoperative congestive heart failure) due to providing fluids to the patient as though this were an open procedure
- Dilutional anemia, again due to providing excessive fluids for a closed procedure.
Postoperative pain medications consisted of one dose of morphine sulfate. The patient was discharged on postoperative day 6 and resumed normal activities by postoperative day 10.13
Dissemination
Before a new procedure is disseminated, evidence of the four Es—efficiency, effectiveness, equanimity, and economy—must be obtained. In retrospective reviews, laparoscopic removal was associated with a slightly longer operating time but much less blood loss, a shorter hospital stay, and fewer complications. The immediate cancer cure rate was the same for open and laparoscopic nephrectomy, and over time the laparoscopic procedure has been shown to be just as good as open surgery at 5 and now 10 years. Also, with time, laparoscopic nephrectomy was shown to reduce institutional costs.
The next question was the proper way to disseminate this knowledge. At Washington University we took the traditional route of providing courses, offering 17 courses on laparoscopic surgery to nearly 1,000 urologists from 1985 to 2002. But as Winfield and associates later showed, only 54% of urologists who completed a 2.5-day hands-on, laboratory-based laparoscopic course actually ended up introducing laparoscopy into their practice.14
The challenge of dissemination is still with us, and we need to find better methods of transferring new skills to our surgical colleagues. In this regard, longer experiences, such as weeklong mini-fellowships and the development of procedure-specific surgical simulators, hold great promise.
UNANSWERED CHALLENGES, UNMET NEEDS
With the advent of any technology comes a cornucopia of unanswered questions and challenges. In the areas of discovery and development, a key question is whether every procedure performed using a new Food and Drug Administration (FDA)-approved technology requires a separate approval by the IRB and ethics committee. For instance, if robotic prostatectomy is approved and performed, are separate approvals needed for robotic nephrectomy, robotic pyeloplasty, and robotic vasectomy? Where would or should the approvals end?
With respect to dissemination, many questions remain: How is a new technology taught effectively? How is surgical competency tested? How is clinical performance or proficiency evaluated?
One problem specific to dissemination is a lack of funding. While ample funding is available for discovery and development, as they bring prestige and profit, dollars are scarce for dissemination, or the teaching and testing of competency and proficiency with new procedures.
Evidence of our failure to educate the postgraduate surgeon abounds in terms of poor outcomes and malpractice suits. The response of government all too often is the knee-jerk reaction to protect (ie, regulate), not educate. To be sure, we can do better, but only if our society commits to the process—not with words, but with funded educational action.
With regard to the last, I believe there is an unmet need for the development of accurate, validated surgical simulators. As a society, we need to find a way to fund the development of simulators for each surgical subspecialty and then use these devices to objectively test an individual surgeon’s manipulative skill as well as cognitive ability when he or she seeks certification or recertification—and perhaps, albeit in an abbreviated 5-minute format, before beginning each operative day. We owe this to ourselves, but most of all to our patients, who in all confidence place their lives in our hands.