ADVERTISEMENT

Inside the operating room—balancing the risks and benefts of new surgical procedures

A collection of perspectives and panel discussion
Author and Disclosure Information

Special perspectives in infants and children

By Thomas M. Krummel, MD

If we surgeons take a step back and consider for a moment what has changed in the operating room (OR) in the past 50 to 60 years, the clear answer is, “Just about everything.” The monitors, pumps, transport devices, and OR tables and lights have all changed dramatically, as have the tools, catheters, sutures, energy sources, scopes, staplers, ports, valves, and joints. If we consider technologies outside the OR that guide what we do inside the OR, the changes are just as striking. Circulatory assist devices for the failing heart and widespread use of dialysis for the failing kidney postdate 1950, as does all of our modern imaging capability—ultrasonography, computed tomography, magnetic resonance imaging, positron emission tomography, functional imaging. As for pharmacotherapy in 1950, there were three antibiotics, no antivirals, one antifungal, and three chemotherapeutic agents. Open drop ether was the anesthetic of choice. Not only have the tools and technologies changed, but virtually every procedure has been changed. Both our profession and the industry that has developed these devices and tools can be rightfully proud.

It is likewise necessary to recognize that our patients have been partners in this innovation. Many of them have given informed consent to participate in research and experimental procedures with the expectation that the benefits might accrue only to future patients and not to themselves. That is a hell of a contribution, and we can be proud of our patients’ partnership.

THE GOOD, THE BAD, AND THE UGLY OF INNOVATION

The history of progress in surgical care is always about innovation, and such progress almost always begins with an unsolved patient problem, regardless of the solution that is developed, be it a tool, a device, a technology, or a surgical procedure. At the same time, any discussion of the ethics of surgical innovation should recognize that while efforts to solve patient problems over the years have had many good results, they have also had some bad results and even the occasional ugly result.

This conference has already focused on much of the good that has come from surgical innovation, including transplantation, remarkable advances in cardiac and gastrointestinal surgery, a host of devices, and too many other benefits to list. Yet missteps have been made along the way, such as bloodletting, gastric freezing as a therapy for ulcer, and carotid denervation for treatment of asthma in children.

Then there are the ugly incidents, and these notably include a number of cases involving children, an issue of special interest to me as a pediatric surgeon. Consider the following examples:

  • Edward Jenner’s notorious cowpox experiment in the late 18th century was conducted in an 8-year-old boy.
  • A well-documented literature shows that orphans were used as subjects for tuberculosis and syphilis inoculations.
  • The more recent case of Jesse Gelsinger involved a teenager with a nonlethal condition who died in a clinical trial of gene therapy, after which an undisclosed financial interest on the part of one of the treating physicians was revealed.

It should give us pause to note that many of these practices that look foolish in hindsight probably seemed more rational at the time they were undertaken.

CHILDREN: THE ORPHANS OF INNOVATION

Children have been the orphans of innovation, as technology development specifically for children has traditionally been a low priority. There are several reasons for this:

  • FDA standards for approving therapies in children are high. For instance, the vast majority of chemotherapeutic drugs are not approved for use in children because conducting a trial specifically in children is deemed too expensive.
  • Pediatric markets for therapies are small.
  • The payor mix is poor.

The benefts of duality

Nevertheless, children have benefited enormously from the duality of technology development, in which a technology developed for one population—either adult or pediatric—ends up benefiting both populations. For instance, no one would have invented the pulse oximeter to care for a child, yet now it is the only device with which infants and children are monitored in the operating room and during transport.

Likewise, in some cases the solutions to pediatric problems have had reciprocal benefits in adults. Ligation of the patent ductus arteriosus and the Blalock-Taussig shunt for tetralogy of Fallot opened the door to our understanding of surgery on the great vessels and ultimately enabled the development of cardiac surgery. Similarly, the early impetus for Thomas Starzl’s groundbreaking work in transplantation was focused on children with biliary atresia even though this work is now much more widely applied in adults.

ETHICAL PRINCIPLES APPLY EQUALLY TO ADULTS AND CHILDREN

The principles of medical ethics that began with Hammurabi in 1750 BC and progressed through Hippocrates’ work circa 400 BC, the 1946 Nuremberg medical trial, the 1964 Declaration of Helsinki,15 Henry Beecher’s classic exposé in 1966,16 and the 1979 Belmont Report17 are just as valid for children as they are for adults.

Francis Moore, the great surgeon who created the environment and the team at Brigham and Women’s Hospital that facilitated the first twin-twin transplant, identified six important components of ethical surgical innovation:18,19

  • A solid scientific background (basic laboratory research)
  • A skilled and experienced team (“field strength,” as Moore called it)
  • An ethical climate within the institution
  • An open display for ongoing discussion
  • Public evaluation
  • Public and professional discussion.

The principles behind these components remain as true today as they were 20 years ago when Moore outlined them.

SPECIAL CONSIDERATIONS IN PEDIATRIC SURGERY: A CASE STUDY IN MATERNAL-FETAL MEDICINE

The Belmont Report, mentioned above, was developed by the US government in 1979 to form the basis of regulations for federally funded research involving human subjects.17 The report identified three basic principles that must underlie such research:

  • Respect for persons—protecting the autonomy of all subjects, treating them with courtesy, and allowing for informed consent
  • Beneficence—maximizing benefits from the research initiative while minimizing risks to the subjects
  • Justice—ensuring reasonable, nonexploitative, and well-considered procedures that are administered fairly.

In pediatric surgery, everyone agrees that the “best interests of the child” must be protected, but the issue of autonomy (a key element of the first Belmont principle) is more difficult to define, of course, when the patient is a child rather than an adult. The question of autonomy is especially tricky in the evolving field of maternal-fetal medicine: what if the patient is a fetus and the mother is an innocent bystander?

Over the past 20 years, tremendous progress has been made in our understanding of diseases of the fetus, particularly diseases that limit fetal viability and diseases that cause serious organ damage but which may be more responsive to postnatal therapy if they are treated prenatally. Michael Harrison, N. Scott Adzick, and a few of their disciples have laid the ethical groundwork for consideration of the fetus as a patient.

Considerations in maternal-fetal medicine

I will conclude with a case in maternal-fetal medicine for us to consider and perhaps debate in the panel discussion at the end of this session. As you consider this case, keep in mind several important observations relating to maternal-fetal medicine:

  • The mother’s health interests cannot be underestimated.
  • Most “fixable” fetal lesions (ie, those that interfere with development and cannot be fixed postnatally, but for which intervention in utero may result in normal development) are very rare. They include obstructive uropathy, lung lesions causing hydrops, congenital diaphragmatic hernia, sacrococcygeal teratoma, hydrocephalus, twin-twin transfusion syndrome, congenital high airway obstruction, hydrothorax, myelomeningocele, and congenital heart disease.
  • The field is evolving, and the efficacy of therapy is supported by variable level I, II, and III evidence.
  • The law has not kept (and perhaps cannot keep) pace with developments in this field.

Case study

A 24-year-old healthy woman has a fetus of 28 weeks’ gestational age with progressive lower urinary tract obstruction with megacystis, bilateral hydronephrosis, and oligohydramnios. In other words, there is diminished volume in the uterine cavity that causes compression of the fetal chest and subsequent respiratory compromise that will be fatal if not addressed. The karyotype is a normal 46,XY male. Serial urine sampling reveals electrolyte and protein profiles with a good prognosis.

Prenatal counseling with fetal therapy specialists suggests that this is the “perfect case” for a vesicoamniotic shunt. This is the least invasive, most successful fetal surgical intervention. It is done under local anesthesia and involves transabdominal transuterine percutaneous placement of a double-lumen pigtail catheter in the fetal bladder. There has never been a reported maternal death, and morbidities have been minimal. Renal and pulmonary function both are improved by approximately 80% in fetuses treated with this intervention, and survival is improved.

The father is eager to proceed. The mother is ambivalent. Should the mother be pressured to proceed, for the good of the child?

Questions to ponder

The following questions are intended to be provocative, with no clear-cut answers:

  • Should (or does) the fetus have independent moral status? Is it full, graded, or none? Does it matter?
  • What are the beneficence-based obligations to the fetus? At 28 weeks’ gestation, the fetus is viable outside the uterus. The fetus is otherwise well, without a lethal karyotype, and has currently good renal function.
  • What are the beneficence-based and autonomy-based obligations to the mother? What are the mother’s obligations to the fetus?
  • What if the mother ultimately decides to proceed and the insurance company denies coverage? What are the social responsibilities to care, cost, and research?

These questions lend themselves to discussion. As much as we surgeons like to be certain about what we do, we would do well to heed the quote from Voltaire that the great surgeon Norman Shumway hung on his office door: “Doubt is not a very agreeable state, but certainty is a ridiculous one.”