ADVERTISEMENT

Excess Readmission vs Excess Penalties: Maximum Readmission Penalties as a Function of Socioeconomics and Geography

Journal of Hospital Medicine 12 (8). 2017 August;:610-617 | 10.12788/jhm.2781

BACKGROUND: The Hospital Readmission Reduction Program (HRRP) penalizes hospitals with “excess” readmissions up to 3% of Medicare reimbursement. Approximately 75% of eligible hospitals received penalties, worth an estimated $428 million, in fiscal year 2015.

OBJECTIVE: To identify demographic and socioeconomic disparities between matched and localized maximum-penalty and no-penalty hospitals.

DESIGN: A case-control study in which cases included were hospitals to receive the maximum 3% penalty under the HRRP during the 2015 fiscal year. Controls were drawn from no-penalty hospitals and matched to cases by hospital characteristics (primary analysis) or geographic proximity (secondary analysis).

SETTING: A selectiion of 3383 US hospitals eligible for HRRP. PARTICIPANTS: Thirty-nine case and 39 control hospitals from the HRRP cohort.

MEASUREMENTS: Socioeconomic status variables were collected by the American Community Survey. Hospital and health system characteristics were drawn from Centers for Medicare and Medicaid Services, American Hospital Association, and Dartmouth Atlas of Health Care. The statistical analysis was conducted using Student t tests.

RESULTS: Thirty-nine hospitals received a maximum penalty. Relative to controls, maximum-penalty hospitals in counties with lower SES profiles are defined by increased poverty rates (19.1% vs 15.5%, P = 0.015) and lower rates of high school graduation (82.2% vs 87.5%, P = 0.001). County level age, sex, and ethnicity distributions were similar between cohorts.

CONCLUSION: Cases were more likely than controls to be in counties with low socioeconomic status; highlighting potential unintended consequences of national benchmarks for phenomena underpinned by environmental factors; specifically, whether maximum penalties under the HRRP are a consequence of underperforming hospitals or a manifestation of underserved communities. Journal of Hospital Medicine 2017;12:610-617. © 2017 Society of Hospital Medicine

Maximum Penalties as a Function of Population Health

The Dartmouth Atlas of Healthcare measures health outcomes, which are regionally aggregated among local hospitals by either HSA or HRR; see Methods. Such small-area aggregation does not precisely reflect outcomes from a specific hospital, but rather it describes the health status of localities. Disparities in health outcomes exist between maximum-penalty and no-penalty HSAs. Complication rates were slightly higher in maximum penalty HSAs, consistent with studies highlighting complications as drivers of surgical readmissions.22,23 Moreover, hospital-wide mortality rates were higher in maximum-penalty areas relative to nonpenalty HSAs (5.3 vs 4.9, P = 0.009).

Using national data, Krumholz et al. found no correlation between rates of readmission and mortality for HF, AMI, and PN24, which is a phenomenon acknowledged by the Medicare Payment Advisory Commission (MedPac) in a 2013 report titled, “Refining the hospital readmission reduction program.”25 In large national studies, others have shown low SES to be associated with elevated readmission but not mortality.10,11 In contrast, we restricted our analysis to matched cohorts and are, to our knowledge, the first to present evidence of an association between readmission and hospital-wide mortality adjusted for age, sex, and ethnicity.

Our results suggest maximum readmission penalties are a function of population health and public health capacity. The rates of ambulatory care sensitive condition (ACSC) discharges were substantially higher in HSAs of maximum penalty hospitals relative to nonpenalty hospitals (108 vs 63 per 1000 Medicare enrollees, P < 0.001). ACSC discharges have been used to measure primary care quality for 30 years, with the assumption being that admission for chronic conditions, such as HF, can be prevented with effective primary care.26,27 Moreover, patients discharged from maximum-penalty hospitals were more likely to have an emergency room visit within 30 days of discharge (20.8% vs 18.4%, P < 0.001). Higher rates of ACSCs and postdischarge emergency department visits suggest outpatient resources in maximum-penalty service areas struggle to manage the disease burden of high-risk populations. Geography may be a contributor; maximum-penalty hospitals were more likely to be rural than no-penalty hospitals (24% vs 5%, P = 0.022).

Our findings suggest hospitals providing care to vulnerable communities (defined by low income, low education, and high rates of ambulatory sensitive discharges) are disproportionately penalized. McHugh et al. revealed high nurse staffing levels to be protective against readmission penalties28, yet high penalties to low-margin hospitals may encourage reduced rather than increased staff. It may be better policy to direct resources rather than penalties to underserved communities; our findings echo others with concern about disproportionate penalties to hospitals serving low SES patients.2,5,6,29

Secondary Analysis: Geographic Matching

Geographic matching paired each maximum-penalty hospital to the nearest no-penalty hospital in an attempt to control for unmeasured regional factors that may confound an association between socioeconomic profile and health outcomes. For example, cost of living 30, 31 and obesity 32,33 vary regionally. Our study was unequipped to assess potential regional confounders; we attempted to control for them with geographical matching.

Median distance between maximum-penalty and no-penalty hospitals was 42.5 miles. Seven pairs were located within the same county, thus both case and control were assigned the same socioeconomic profile. Despite close proximity and identical SES profile in 7 of 39 pairs, maximum-penalty hospitals were in counties with lower income and lower rates of education, strengthening the association between SES and maximum readmission penalties.

Implications and Future Directions

In response to criticism surrounding the HRRP, the National Quality Forum endorsed the general concept of SES adjustment for hospital quality measures.34 Subsequently, in a briefing dated March 24, 2015, MedPAC, a government agency which provides Medicare policy analysis to Congress, proposed an SES adjustment methodology of “dividing hospitals into peer groups based on their overall share of low-income Medicare patients, and then setting a benchmark readmissions target for each peer group”;35 in other words, lower standards for hospitals that serve low-income populations. MedPAC’s proposal will reduce penalties to “safety net” institutions, which is progress but not a solution. Although the HRRP appears to be working, according to the US Department of Health and Human Services, readmissions fell by 150,000 between January 2012 and February 2013,36 we are concerned neither the HRRP nor the MedPac revision proposal considers geographic and environmental components of readmission. The HRRP promotes national improvement in exchange for regional regression.

Fair quality measures are key to value-based reimbursement models; yet, implicit in penalties for excess readmissions is the assumed ability to calculate hospital performance targets. Benchmarks for safety, timely care, and patient satisfaction can be uniform; rates of central line infections should not be influenced by patient mix. However, 9 of the 39 maximum-penalty hospitals under the HRRP are in rural Kentucky; one could hypothesize many reasons why rural Kentucky is a hotbed for excess readmission, including the regional production of tobacco and bourbon.

The fundamental question raised by our study is whether poor performance on quality measures is a function of underperforming hospitals or a manifestation of underserved communities. Moving forward, we encourage data systems and study designs that focus research on geospatial distribution of population health within the context of social and behavioral health determinants.37 Small-area studies of factors that drive health outcomes will inform rational alignment of healthcare policies and resources (including penalties and incentives) with underlying population needs.

Online-Only Materials

Attachment
Size