IM Board Review

A 75-year-old with abdominal pain, hypoxia, and weak pulses in the left leg

Author and Disclosure Information



Notably, the patient’s right ventricular function had also been impaired on the echocardiogram performed during his admission 1 month previously. On transthoracic echocardiography during the current admission, the patient was found to have a similar degree of right ventricular dysfunction. This finding, along with the oxygen requirement that developed during the earlier admission, suggested that his pulmonary embolism may have been subacute and that the diagnosis may have been missed during the earlier hospital stay.

The patient was treated with unfractionated heparin. After the hospital’s multidisciplinary pulmonary embolism response team discussed and weighed the above factors, they recommended to not pursue thrombolytic therapy or inferior vena cava filter placement.

Of note, the patient’s pulses in the left lower extremity continued to be weak but palpable, and the left leg was cooler to touch than the right leg.


4. How should the finding of weak pulses in this patient’s left leg be initially investigated?

  • Computed tomographic angiography with runoff
  • Ankle-brachial indices with pulse-volume recordings
  • Arterial duplex ultrasonography
  • Magnetic resonance angiography of the lower extremities

The ankle-brachial index is the initial diagnostic test for assessment of pulse abnormalities and for diagnosis of lower-extremity peripheral artery disease. It is calculated by dividing the higher of the ankle systolic pressures (posterior tibial or dorsalis pedis) by the higher of the 2 brachial pressures (left or right). 9 Normal values are between 1.00 and 1.40.

Ankle-brachial indices in our patient

Our patient underwent measurement of his brachial, dorsalis pedis, and posterior tibial artery systolic pressures using blood pressure cuffs and continuous-wave Doppler. Ankle pulse-volume recordings were also obtained.

The patient’s ankle-brachial index and pulse-volume recordings.

Figure 4. The patient’s ankle-brachial index and pulse-volume recordings. Right side 1.24, left side 0.68. This suggests moderate disease on the left and normal vessels on the right.

The right leg ankle-brachial index was normal at rest with a normal pulse-volume recording waveform. The left leg ankle-brachial index was moderately reduced (0.68), and the pulse-volume recording waveform was also dampened ( Figure 4 ). These findings confirmed that he had arterial disease in the left leg, correlating with the physical findings.

Given the patient’s poor renal function and concern for acute renal infarction, we thought it best to avoid iodinated or gadolinium contrast, such as with magnetic resonance or computed tomographic angiography.

Segmental leg pressures and pulse-volume recordings can be performed to help localize the level of arterial disease in the extremities, but were not done in this case because of the extensive deep vein thrombosis in the right leg. 10,11

Arterial ultrasonography in our patient

Arterial duplex ultrasonography was performed to help determine the location of arterial disease. It showed patent arteries in the right leg. In the left lower extremity there was slow, monophasic blood flow in the distal superficial femoral artery. The popliteal artery was occluded. The posterior tibial artery was occluded at the origin, with reconstitution distally. The peroneal artery was occluded throughout. The anterior tibial artery was patent throughout. The ultrasonographic findings were thought to be suspicious for arterial thromboembolism.

Next Article:

Acute monocular vision loss: Don’t lose sight of the differential

Related Articles