IM Board Review

A 75-year-old with abdominal pain, hypoxia, and weak pulses in the left leg

Author and Disclosure Information



Further studies for our patient

Computed tomography (CT) with a chest pulmonary embolism protocol showed filling defects.

Figure 2. Computed tomography (CT) with a chest pulmonary embolism protocol (top) showed filling defects (arrows). CT of the abdomen and pelvis showed renal artery thrombosis (arrow).

Computed tomography of the chest, abdomen, and pelvis with contrast was performed ( Figure 2 ) to evaluate the patient’s chest pain, shortness of breath, and abdominal pain. It revealed bilateral pulmonary emboli, with filling defects in the distal right and left main pulmonary arteries extending into the lobar branches of the right upper, middle, and lower lobes and left upper and lower lobes; multiple subsegmental pulmonary emboli were also seen. The patient was also found to have evidence of a left renal infarction, with an extensive filling defect in the left renal artery, consistent with renal artery thrombosis.

Transthoracic echocardiography was performed to look for evidence of right ventricular strain secondary to the pulmonary embolism.


2. Which of the following findings on transthoracic echocardiography would not suggest acute pulmonary embolism?

  • Midright ventricular wall hypokinesis with apical sparing
  • Severe tricuspid regurgitation
  • Left ventricular dilation
  • Lack of respiratory variation of the inferior vena cava
  • Septal wall motion toward the left ventricle

Left ventricular dilation does not suggest acute pulmonary embolism. Echocardiograms of patients with acute submassive pulmonary embolism typically show evidence of right ventricular strain, such as the other entities listed above (midright ventricular hypokinesis with apical sparing, severe tricuspid regurgitation, lack of respiratory variation of the inferior vena cava, and septal wall motion toward the left ventricle).

The degree of right ventricular dysfunction is related to the extent of acute pulmonary vascular occlusion and aids in risk-stratification of patients with acute pulmonary embolism. Midright ventricular wall hypokinesis with apical sparing has been termed the McConnell sign. 2

In our patient, transthoracic echocardiography showed:

  • Normal left ventricular ejection fraction
  • Mild diastolic dysfunction
  • Right ventricular dilation with moderately decreased right ventricular systolic function and apical sparing
  • Right ventricular systolic pressure 54 mm Hg, consistent with moderate pulmonary hypertension
  • Right atrial pressure 10 mm Hg
  • No inspiratory collapse of a dilated inferior vena cava
  • Mild tricuspid valve regurgitation.


3. Given the above information, how would you classify the patient’s pulmonary embolism?

  • Massive
  • Submassive
  • Low-risk
  • Clinically stable

The patient’s pulmonary embolism is submassive.

Classification of pulmonary embolism
Many classification schemes exist for acute pulmonary embolism. That of the American Heart Association is shown in Table 2 .3

Historically, the classification of pulmonary embolism was determined by the angiographic thrombus burden. However, this has limited utility because clinical factors (eg, hypotension on initial presentation) have been shown to be better predictors of short-term mortality risk. 3

Our patient is characterized as having a submassive pulmonary embolism based on elevated biomarkers (troponin T, N-terminal pro-B-type natriuretic peptide) and right ventricular dysfunction in the absence of hypotension.


 Example of lower-extremity duplex ultrasonography.

Figure 3. Example of lower-extremity duplex ultrasonography. Arteries and veins are labeled. Veins without deep vein thrombosis are compressible, as seen on the left. A vein is shown that is not compressible, suggesting deep vein thrombosis.

Next Article:

Acute monocular vision loss: Don’t lose sight of the differential

Related Articles