ADVERTISEMENT

Robotic Hysterectomy

Author and Disclosure Information

At the end of the procedure, the robotic arms are disengaged from the trocars, the robotic column is moved away, and the fascia at the umbilical site is closed. The other trocar sites require closure of only the skin. We always perform a cystoscopy after injection of intravenous indigo carmine to ensure that there are bilateral ureteral jets and no injury to the bladder.

When we plan to send the patient home on the day of the robotic hysterectomy—something we started doing when we observed how well patients were faring with this approach—we modify the anesthesia regimen somewhat.

We give each patient dexamethasone preoperatively, apply an antinausea patch behind her ear, and administer two additional medications to prevent nausea: Zofran (ondansetron) and aprepitant. Then, at the end of the hysterectomy, we inject both the right and the left pelvic plexus (sympathetic and parasympathetic) with a cocktail of morphine, vasopressin, and Marcaine (bupivacaine). We also infiltrate the trocar sites with Marcaine, and before the patient is awakened from anesthesia, we administer intravenous ketorolac. When she is awake, the patient will then have minimal discomfort.

Additionally, normal saline (200 mL) is left in the bladder at the end of the cystoscopy so that the patient will have the urge to empty her bladder in the next hour rather than the need to wait up to 5 hours to empty her bladder before being able to go home.

In our preoperative discussions with patients, we do inform them that the incisions are placed a little higher than with conventional laparoscopy. Only once has one of our patients expressed cosmetic concern and opted for a laparoscopic approach with suprapubic trocar placement.

Hysterectomy has been a natural beginning application for robotic technology in gynecologic surgery. Experience with the approach has applications, in turn, for other gynecologic procedures because the same instrumentation and usually the same port placement are used.

Patient Outcomes

In a series of 91 consecutive patients who underwent robotic simple hysterectomy at Mayo (with or without salpingo-oophorectomy or concomitant appendectomy) between March 2004 and December 2005, we had no conversions to conventional laparoscopy or laparotomy, no bladder or ureteral injuries, and few intraoperative and postoperative complications (Am. J. Obstet. Gynecol. 2007;197:113.e1-4).

Our one intraoperative complication was an enterotomy that was repaired robotically in a patient with extensive pelvic adhesions. (We have learned that complications can be repaired robotically without having to convert to laparotomy.)

Postoperatively, one patient with cardiomyopathy required admission to intensive care for 24 hours for exacerbation of heart failure, and another patient required admission for vaginal cuff abscess. Three patients were readmitted for ileus, pneumonia, and colitis. The mean estimated blood loss was 79 mL, and the mean hospital stay was 1.3 days. (Indications in the patients, whose mean age was 50 years, included menometrorrhagia in 43% and ovarian neoplasm in 20%.)

In the evaluation of robotic surgery and analysis of the experience, it is important to break down the total process into several components: docking time (the time required to attach the robotic arms to the trocars), console time (the surgeon's time dedicated exclusively to performing the hysterectomy), and total operating time (from incision to closure).

For surgeons who haven't used the robotic system, a common misperception is that it takes a long time to set up for each procedure. In our series, however, the mean docking time was only 2.9 minutes.

The mean console time was 79 minutes, and the total mean operating time was 122 minutes, which was 14 minutes shorter than conventional laparoscopy. A mean of 43 minutes was required for setup and close, which included trocar placement, exploration, and the removal of trocars, closure, and cystoscopy. (The time for setup and close has not been reported before in laparoscopic surgery.)

Our surgical time was minimized by having a dedicated robotic team and by using certain surgical strategies, such as the use of only three instruments (monopolar spatula, bipolar grasper, and needle-holder) for the entire procedure—a practice that also reduces cost—and the use of precut, short sutures and suture clips. The optimal robotic team can comprise two surgeons or one surgeon and one assistant, as well as at least two nurses who are well versed in the robotic instrumentation and system. The assistant also plays a major role in fixing any malfunctions of the robotic instruments or arms, and in switching robotic instruments.

Console time clearly decreased over time as we performed more simple hysterectomies. It was not significantly affected by the performance of an appendectomy, but it was affected by uterine weight and the lysis of adhesions. In our practice, we prefer a vaginal approach for the larger uterus that requires more morcellation. In general, our threshold for the robotic approach is a uterus of 12-14 weeks' gestational size.