Safe and effective bedside thoracentesis: A review of the evidence for practicing clinicians
BACKGROUND
Physicians often care for patients with pleural effusion, a condition that requires thoracentesis for evaluation and treatment. We aim to identify the most recent advances related to safe and effective performance of thoracentesis.
METHODS
We performed a narrative review with a systematic search of the literature. Two authors independently reviewed search results and selected studies based on relevance to thoracentesis; disagreements were resolved by consensus. Articles were categorized as those related to the pre-, intra- and postprocedural aspects of thoracentesis.
RESULTS
Sixty relevant studies were identified and included. Pre-procedural topics included methods for physician training and maintenance of skills, such as simulation with direct observation. Additionally, pre-procedural topics included the finding that moderate coagulopathies (international normalized ratio less than 3 or a platelet count greater than 25,000/µL) and mechanical ventilation did not increase risk of postprocedural complications. Intraprocedurally, ultrasound use was associated with lower risk of pneumothorax, while pleural manometry can identify a nonexpanding lung and may help reduce risk of re-expansion pulmonary edema. Postprocedurally, studies indicate that routine chest X-ray is unwarranted, because bedside ultrasound can identify pneumothorax.
CONCLUSIONS
While the performance of thoracentesis is not without risk, clinicians can incorporate recent advances into practice to mitigate patient harm and improve effectiveness. Journal of Hospital Medicine 2017;12:266-276. © 2017 Society of Hospital Medicine
© 2017 Society of Hospital Medicine
Pleural effusion can occur in myriad conditions including infection, heart failure, liver disease, and cancer.1 Consequently, physicians from many disciplines routinely encounter both inpatients and outpatients with this diagnosis. Often, evaluation and treatment require thoracentesis to obtain fluid for analysis or symptom relief.
Although historically performed at the bedside without imaging guidance or intraprocedural monitoring, thoracentesis performed in this fashion carries considerable risk of complications. In fact, it has 1 of the highest rates of iatrogenic pneumothorax among bedside procedures.2 However, recent advances in practice and adoption of newer technologies have helped to mitigate risks associated with this procedure. These advances are relevant because approximately 50% of thoracenteses are still performed at the bedside.3 In this review, we aim to identify the most recent key practices that enhance the safety and the effectiveness of thoracentesis for practicing clinicians.
METHODS
Information Sources and Search Strategy
With the assistance of a research librarian, we performed a systematic search of PubMed-indexed articles from January 1, 2000 to September 30, 2015. Articles were identified using search terms such as thoracentesis, pleural effusion, safety, medical error, adverse event, and ultrasound in combination with Boolean operators. Of note, as thoracentesis is indexed as a subgroup of paracentesis in PubMed, this term was also included to increase the sensitivity of the search. The full search strategy is available in the Appendix. Any references cited in this review outside of the date range of our search are provided only to give relevant background information or establish the origin of commonly performed practices.
Study Eligibility and Selection Criteria
Studies were included if they reported clinical aspects related to thoracentesis. We defined clinical aspects as those strategies that focused on operator training, procedural techniques, technology, management, or prevention of complications. Non-English language articles, animal studies, case reports, conference proceedings, and abstracts were excluded. As our intention was to focus on the contemporary advances related to thoracentesis performance, (eg, ultrasound [US]), our search was limited to studies published after the year 2000. Two authors, Drs. Schildhouse and Lai independently screened studies to determine inclusion, excluding studies with weak methodology, very small sample sizes, and those only tangentially related to our aim. Disagreements regarding study inclusion were resolved by consensus. Drs. Lai, Barsuk, and Mourad identified additional studies by hand review of reference lists and content experts (Figure 1).
Conceptual Framework
All selected articles were categorized by temporal relationship to thoracentesis as pre-, intra-, or postprocedure. Pre-procedural topics were those outcomes that had been identified and addressed before attempting thoracentesis, such as physician training or perceived risks of harm. Intraprocedural considerations included aspects such as use of bedside US, pleural manometry, and large-volume drainage. Finally, postprocedural factors were those related to evaluation after thoracentesis, such as follow-up imaging. This conceptual framework is outlined in Figure 2.