Article

Lower Extremity Injuries in Ice Hockey: Current Concepts

Author and Disclosure Information

 

References

EVALUATION AND MANAGEMENT OF COMMON LOWER EXTREMITY HOCKEY INJURIES

HIP INJURIES

Hip and groin injuries are very common amongst this group of athletes and account for approximately 9% of all ice hockey injuries.1 Unfortunately, they are also known for their high recurrence rates, which may be in part due to delayed diagnosis, inadequate rest and rehabilitation, as well as the extreme loads that are placed on the hip during competition.10,11 In hockey, the most commonly reported hip injuries include goaltender’s hip, FAI, sports hernia/hockey groin syndrome, adductor strains, hip pointer, and quadriceps contusions. Dalton and colleagues12 performed the largest epidemiological study to date on hip and groin injuries amongst National Collegiate Athletic Association ice hockey players and reported that the most common injury mechanism was noncontact in nature. Contact injuries accounted for 13% (55 of 421) in men’s ice hockey players while less than 4% (4 of 114) injuries in female ice hockey players, which is likely attributed to a no checking rule in the women’s division. Some of these hip and groin injuries are difficult to diagnose so it is important for the team physician to perform a thorough history and physical examination. Advanced imaging (magnetic resonance imaging [MRI] or a computed tomography (CT) scan with 3D reconstructions) may be necessary to make the correct diagnosis. This is important for providing proper treatment as well as setting player expectations for return to sport.12

Table 1. Return-to-Play Guidelines for Common Lower Extremity Ice Hockey Injuries

Lower Extremity Injury

Treatment Options

Return-to-the-Rink Goal

FAI

In-season: injection, physical therapy program, NSAIDS. Off-season or unable to play: requires arthroscopic surgery

Nonoperative can take up to 6 weeks. Surgical depends on what is fixed but goal is 4 months to return to ice24,26

Sports hernia/athletic pubalgia

In-season: physical therapy program, NSAIDS

Off-season or unable to play requiring surgery. Essential to make sure no other pathology (eg, FAI, osteitis pubis, adductor strain) to maximize success

Nonoperative 6-8 wk trial of physical therapy

Operative: depends if concomitant FAI but in isolation goal is 3-4 mo33,54

Adductor strains

Ice, NSAIDS, physical therapy, use of Hypervolt Hyperice

Depends on position (goalie vs skater) and severity; can take up to 4-8 wk to return to ice.

Want 70% strength and painless ROM to skate successfully;55 in chronic cases, may take up to 6 mo35

Quadriceps contusion

Hinged knee brace to maintain 120° of flexion, ice, compression wrap.

When player regains motion and strength, return to ice can be as fast a couple of days or as long as 3 wk8,46

MCL

Hinged knee brace, shin pad modification, ice, NSAIDs

Depends on Grade; if Grade I, 1-2 wk; Grade II, 2-4 wk; Grade III, 4-6 wk8

ACL

Surgery autograft BTB

autograft soft tissue

9-10 mo41

Meniscus tear

Depends on type of tear and seasonal timing (in-season or off-season)

If surgical, 3-4 mo; if repair,

4-6 wk if partial menisectomy

High ankle sprain

Cam boot, NSAIDS, ice and physical therapy

6 wk49

Boot top laceration

Repair of cut structures, depends on depth and what is injured; best treatment is prevention with Kevlar socks

If laceration is deep and severs any medial tendons/vascular structures, return to ice can be ≥6 mo

Lace bite

Bunga pad, ice, diclofenac gel

Couple of days to up to 2 wk in recalcitrant cases3

Abbreviations: ACL, anterior cruciate ligament; BTB, bone-patellar tendon-bone; Cam, controlled ankle motion boot; MCL, medial collateral ligament; FAI, femoroacetabular impingement; NSAIDS, nonsteroidal anti-inflammatory drugs; ROM, range of motion.

Throughout the hockey community, FAI is being examined as a possible source of symptomatic hip pain amongst players at all levels. A recent study, which utilized the National Hockey League (NHL) injury surveillance database, reported that FAI accounted for 5.3% of all hip and groin injuries.13 The etiology of FAI is thought to arise from a combination of genetic predisposition coupled with repetitive axial loading/hip flexion. This causes a bony overgrowth of the proximal femoral physes resulting in a cam deformity (Figure 1).5,14 The abnormal bony anatomy allows for impingement between the acetabulum and proximal femur, which can injure the labrum and articular cartilage of the hip joint.

Figure 1. Radiograph AP pelvis of ice hockey goaltender with mixed-type femoroacetabular impingement. His alpha angle of right hip measured 65°; an os acetabuli is present.

In the recent study by Ross and colleagues,15 the authors focused on symptomatic hip impingement in ice hockey goalies.15 Goaltender’s hip may be the result of the “butterfly style,” which is a technique of goaltending that emphasizes guarding the lower part of the goal. The goalie drops to his/her knees and internally rotates the hips to allow the leg pads to be parallel to the ice. This style acquired the name butterfly because of the resemblance of the spread goalie pads to a butterfly’s wings. Bedi and associates16 have evaluated hip biomechanics using 3D-generated bone models and showed in their study that arthroscopic treatment can improve hip kinematics and range of motion.

Plain radiographs showed that 90% (61 of 68) of hockey goalies had an elevated alpha angle signifying a femoral cam-type deformity.15 Goalies had a significantly lower mean lateral center-edge angle (27.3° vs 29.6°; P = .03) and 13.2% of them were found to have acetabular dysplasia (lateral center-edge angle<20°) compared to only 3% of positional players. The CT scan measurements demonstrated that hockey goalies have a unique cam-type deformity that is located more lateral (1:00 o’clock vs 1:45 o’clock; P < .0001) along the proximal femur, an elevated maximum alpha angle (80.9° vs 68.6°; P < .0001) and loss of offset, when compared to positional players. These findings provide an anatomical basis in support of reports that goaltenders are more likely to experience intra-articular hip injuries compared to other positional players.13

Regardless of position, symptomatic FAI in a hockey player is generally a problem that slowly builds and is made worse with activity.17 On examination, the player may have limited hip flexion and internal rotation, as well as weakness compared to the contralateral side when testing hip flexion and abduction.18,19 Plain radiographs plus MRI or CT allow for proper characterization and diagnosis (to include underlying chondrolabral pathology).20,21

In the young athlete, initial management includes physical therapy, which focuses on core strengthening. Emphasis is placed on hip flexion and extension, as well as abduction and external rotation with the goal of reducing symptoms and avoiding injuries.22 A similar approach may be applied to the elite athlete, but failure of nonoperative management may necessitate surgical intervention. Hip arthroscopy continues to grow in popularity over open surgical dislocation with low complication rate and high return-to-play rate.23-25

For the in-season athlete, attempts to continue to play can be assisted with the role of an intra-articular corticosteroid injection, which can help calm inflammation within the hip joint and mitigate pain, while rehabilitation focuses on core stabilization, postural retraining and focusing on any muscle imbalances that might be present. For positional players, ice time and shift duration can be adjusted to give the player’s hip a period of rest; meanwhile, for goaltenders, shot volumes in practice can be decreased.

Continue to: For athletes who...

Next Article: