Phototherapy in the Age of Biologics

Daniel Walker, BS, and Heidi Jacobe, MD, MSCS

Dermatologists are presented with a diversity of therapeutic modalities for the treatment of inflammatory, sclerosing, and neoplastic conditions, but with the development of various new irradiation devices that utilize specific parts of the electromagnetic spectrum, phototherapy has become a more viable, accessible, and efficacious option in the treatment of these conditions. The ultraviolet (UV) range (10-400 nm) is further subdivided into UVA and UVB, each of which has been particularly useful in a number of skin conditions. The most commonly used forms of UV irradiation are UVA1, psoralen plus UVA (PUVA), and narrowband (NB) UVB. Each of these modalities differ in their mechanism of action, indications, and side effect profiles, and it is important that clinicians be familiar with these differences. Today, phototherapy is a valuable option in the treatment of many nonpsoriatic conditions including atopic dermatitis, sclerosing skin conditions such as morphea, vitiligo, and mycosis fungoides. Due to its relative safety, phototherapy may be used in most populations, including children and pregnant women. However, contraindications and side effects are known and should be considered before patients begin a phototherapeutic regimen.

Semin Cutan Med Surg 30:190-198 © 2011 Elsevier Inc. All rights reserved.

KEYWORDS phototherapy, UVA1, narrowband UVB, PUVA, atopic dermatitis, morphea, vitiligo, mycosis fungoides

For thousands of years, sunlight has been used to treat a variety of skin conditions. Ultraviolet (UV) light has been a mainstay in the treatment of psoriasis for more than 30 years, but the development of new topical agents and novel biological immunomodulators has provided dermatologists with a whole new armamentarium in the treatment of psoriasis. However, these drugs are limited by their availability, cost, and side effect profiles and because of several advantages to both patients and physicians, phototherapy remains an important therapeutic option for the treatment of psoriasis and other inflammatory skin conditions. In addition, within the last 2 decades, new phototherapeutic modalities have been developed. These devices expanded the use of phototherapy in the treatment of dermatologic disease. Now, phototherapy is an excellent treatment option for many therapeutically challenging dermatologic disorders.

Photobiology

The electromagnetic spectrum can be divided into subgroups on the basis of the biological effects of each wavelength (Fig. 1). An extensive review of each portion of this spectrum is beyond the scope of this review, and we limit our discussion to radiation within the ultraviolet range (10-400 nm). Ultraviolet radiation (UVR) can be further divided into several subtypes, which are, from shortest to longest wavelengths, UVC (200-290 nm), UVB (290-320 nm), and UVA (320-400 nm).

Unlike UVB radiation, UVA has the ability to penetrate to the deep dermis and subcutis. UVA1, because of its proximity to...
visible light on the far end of the UVA spectrum, does not induce erythema effectively, whereas UVA2, which resides at the lower wavelengths of UVA, may be associated with effects similar to UVB,9 including acute sunburn. UVA is also the only type of UV radiation that is not filtered by window glass. The therapeutic potential of UVA1 first emerged in 1992 in the treatment of atopic dermatitis10,11 and then in 1995 for the treatment of localized scleroderma.12 UVA1 has been reported to have efficacy in a growing number of skin disorders.

Photochemotherapy is the use of psoralen combined with broadband UVA irradiation, also known as psoralen UV (PUVA). PUVA, in its modern form, was first used to treat vitiligo in 1947.13 The most common PUVA regimen in the United States uses 8-methoxypsoralen (8-MOP), which is administered orally 2 hours before UVA irradiation. Bath PUVA is application of a topical psoralen before UVA irradiation, either to the entire body or limited areas (hands and feet). Advantages of bath PUVA include shorter irradiation times and a lack of gastrointestinal side effects associated with oral psoralens, but its use is limited by need for special facilities, patient inconvenience, and unpredictability (although this is minimal for localized topical PUVA). Consequently, PUVA is usually administered via the use of oral psoralen.

**Mechanism of Action**

UV radiation exerts a multitude of biological effects in the skin from mutagenic to immunologic. We present a brief overview here. The depth of penetration of the different light sources used for medical therapy dictate which part of the skin they exert their greatest effect. UVB has more energy than UVA (inverse relationship between wavelength and energy) but has less capability to penetrate beyond the superficial layers of the skin. Thus, UVB primarily affects Langerhans cells and epidermal keratinocytes. UVA radiation, particularly UVA1, reaches the deep dermis and potentially the subcutis, thereby impacting dermal fibroblasts, dendritic cells, lymphocytes, mast cells, and granulocytes.8,14

The ability to induce lymphocyte apoptosis is an important immunomodulatory effect of UVA and UVB phototherapy.15 T cells are highly susceptible to the effects of UV irradiation.14 The apoptotic effect of UVB is modulated via multiple mechanisms, including the Fas/Fas ligand system, p53, and apoptotic proteases.16-18 The apoptotic effects of UVA1 are different from those associated with UVB and include 2 independent caspase systems and an immediate apoptotic effect that may target specific types of cells preferentially.19,20 UVR also inhibits and depletes the skin of Langerhans cells.21,22

The major target for UVB radiation is nuclear DNA, which absorbs UVB-generating pyrimidine dimers, inhibiting DNA synthesis.23 For PUVA the psoralen molecule intercalates into the double strand of DNA. UVA irradiation then induces a DNA-psoralen crosslink, inhibiting DNA replication and causing cell cycle arrest.24

UVR alters the cellular cytokine profiles. UVA1 suppresses proinflammatory cytokines25 tumor necrosis factor-α and interleukin (IL)-12 and decreases levels of interferon-γ and intercellular adhesion molecule-1, proinflammatory cytokines involved in lymphocyte migration into tissues.26-28 UVA1 also causes phenotypic and functional maturation of migrating dermal dendritic cells into potent antigen-presenting cells.29 UVB has also been shown to decrease proinflammatory cytokines,30,31 interferon-γ and IL-12 and increase levels of the anti-inflammatory cytokine IL-10. UVR also has a multitude of effects32-35 on diseased skin, many of which putatively exert the therapeutic benefit of phototherapy (Table 1).

**Disease-Specific Therapy**

**Atopic Dermatitis**

Early investigators observed that many patients with atopic dermatitis (AD) improved in the summer, which prompted early reports36 on the use of phototherapy in the treatment of AD. Multiple phototherapeutic modalities have been credited with exerting a beneficial effect in AD. For the purposes of this review, we concentrate on those that are most commonly used in modern phototherapeutic practice: NB UVB and UVA1.
NB UVB is likely the best option for patients with AD who require therapy above and beyond topical preparations. In a pilot case series, 5 patients with severe atopic eczema treated with NB UVB showed significant improvement after 3 weeks of treatment. In a large randomized trial of 73 adults with moderate-to-severe atopic dermatitis, investigators compared NB UVB with UVA during a 12-week course and found NB UVB to be more effective in reducing disease severity. The use of UVA in the management of patients with acute exacerbations of atopic dermatitis was first described by Krutmann et al in the early 1990s. They were able to demonstrate that high-dose UVA (130 J/cm²) was superior to combined UVA and UVB (UVAB). In another study, Krutmann et al showed that high-dose UVA was superior to midpotency corticosteroids in addition to UVAB. Von Kobyletzki et al investigated the use of cold-light UVA, an apparatus that was designed to reduce the heat load generated by traditional UVA and UVAB. They found cold-light UVA to be superior to both UVA and UVAB. Two trials have attempted to establish the optimal dosing schedule for UVA in the treatment of acute AD. Tzaneva et al compared high-dose UVA with medium-dose UVA and showed that there was no statistically significant difference between the 2 regimens. Kowalzick et al conducted a comparative trial for acute AD in which they determined that medium-dose UVA was superior to low-dose UVA. Both UVA and NB UVB in the treatment of AD are supported by level 1 evidence, as defined by the U.S. Preventative Task Force Services. This led investigators to conclude that UVA was the preferred therapy for acute exacerbations of AD and that NB UVB was preferred for maintenance. The authors of a series of recent studies directly comparing NB UVB with UVA have challenged this notion.

In a recent study, Gambichler et al compared medium-dose UVA to NB UVB in the treatment of both acute and chronic atopic eczema. After a 6-week course, both modalities produced significant clinical improvements with no difference between the 2 modalities. Majoe et al published similar results, concluding that NB UVB and medium dose UVA appeared equally effective in the treatment of moderate to severe AD. Most recently, Tzaneva et al published the results of a randomized observer-blinded cross-over trial in which the authors found that PUVA provided a better short- and long-term response than medium dose UVA in patients with severe AD. A summary of these studies is found in Table 2.

### Table 1 Effects of Ultraviolet Radiation on Diseased Skin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitiligo</td>
<td>NB UVB induces activation, proliferation, and migration of inactive melanocytes to the epidermis, such as basic fibroblast growth factor and endothelin-1, and immunosuppression.</td>
</tr>
<tr>
<td>Sclerosing skin conditions</td>
<td>UVA1 alters cytokine cascade, including increased collagenase and UVB has an antimicrobial effect on local flora and Staphylococcus aureus.</td>
</tr>
<tr>
<td>Skin flora</td>
<td>NB UVB is likely the best option for patients with AD who require therapy above and beyond topical preparations. In a pilot case series, 5 patients with severe atopic eczema treated with NB UVB showed significant improvement after 3 weeks of treatment. In a large randomized trial of 73 adults with moderate-to-severe atopic dermatitis, investigators compared NB UVB with UVA during a 12-week course and found NB UVB to be more effective in reducing disease severity. The use of UVA in the management of patients with acute exacerbations of atopic dermatitis was first described by Krutmann et al in the early 1990s. They were able to demonstrate that high-dose UVA (130 J/cm²) was superior to combined UVA and UVB (UVAB). In another study, Krutmann et al showed that high-dose UVA was superior to midpotency corticosteroids in addition to UVAB. Von Kobyletzki et al investigated the use of cold-light UVA, an apparatus that was designed to reduce the heat load generated by traditional UVA and UVAB. They found cold-light UVA to be superior to both UVA and UVAB. Two trials have attempted to establish the optimal dosing schedule for UVA in the treatment of acute AD. Tzaneva et al compared high-dose UVA with medium-dose UVA and showed that there was no statistically significant difference between the 2 regimens. Kowalzick et al conducted a comparative trial for acute AD in which they determined that medium-dose UVA was superior to low-dose UVA. Both UVA and NB UVB in the treatment of AD are supported by level 1 evidence, as defined by the U.S. Preventative Task Force Services. This led investigators to conclude that UVA was the preferred therapy for acute exacerbations of AD and that NB UVB was preferred for maintenance. The authors of a series of recent studies directly comparing NB UVB with UVA have challenged this notion. In a recent study, Gambichler et al compared medium-dose UVA to NB UVB in the treatment of both acute and chronic atopic eczema. After a 6-week course, both modalities produced significant clinical improvements with no difference between the 2 modalities. Majoe et al published similar results, concluding that NB UVB and medium dose UVA appeared equally effective in the treatment of moderate to severe AD. Most recently, Tzaneva et al published the results of a randomized observer-blinded cross-over trial in which the authors found that PUVA provided a better short- and long-term response than medium dose UVA in patients with severe AD. A summary of these studies is found in Table 2.</td>
</tr>
</tbody>
</table>
respective case series the authors did assess total body improvement via the modified Rodnan skin score and found total body improvement for these patients. In our experience, UVA appears to be of benefit to scleroderma patients who have early inflammatory skin disease. We also noted great improvement in the pruritus and salt and pepper pigmentary change associated with scleroderma. Adequately powered trials assessing total body improvement in early scleroderma are needed to further define the potential benefit of this treatment. PUVA has also been reported to be of benefit in scleroderma and may be an option where UVA is not available. Table 5 provides an overview of other sclerosing skin conditions reported to improve with UVA phototherapy.

### Table 2: Studies of Phototherapy for AD

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Number of Patients</th>
<th>Phototherapy Modality</th>
<th>Dose</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krutmann et al (1992)</td>
<td>RCT</td>
<td>25</td>
<td>HD UVA1</td>
<td>130 J/cm²</td>
<td>HD UVA1 superior to UVAB, and produced results more quickly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UVAB</td>
<td>Mean 28 mJ/cm² UVB, 7 J/cm² UVA</td>
<td></td>
</tr>
<tr>
<td>Kowalzick et al (1995)</td>
<td>Uncontrolled trial</td>
<td>22</td>
<td>MD UVA1</td>
<td>50 J/cm²</td>
<td>MD UVA1 superior to LD UVA1</td>
</tr>
<tr>
<td>Krutmann et al (1998)</td>
<td>Randomized multicenter trial</td>
<td>43</td>
<td>HD UVA1</td>
<td>130 J/cm²</td>
<td>HD UVA1 superior to UVAB, corticosteroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UVAB</td>
<td>Mean 33 mJ/cm² UVB, 6.8 J/cm² UVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5% fluocortolone cream</td>
<td></td>
<td>Once daily</td>
</tr>
<tr>
<td>von Kobyletzki et al (1999)</td>
<td>Randomized comparative trial</td>
<td>120</td>
<td>Cold-light UVA1</td>
<td>50 J/cm²</td>
<td>Cold-light UVA1 superior to UVA1, UVAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UVA1</td>
<td>50 J/cm²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UVAB</td>
<td>Mean 0.29 J/cm² UVB, 7.9 J/cm² UVA</td>
<td></td>
</tr>
<tr>
<td>Tzaneva et al (2001)</td>
<td>Randomized bilateral comparison study</td>
<td>10</td>
<td>HD UVA1</td>
<td>130 J/cm²</td>
<td>No difference between HD and MD UVA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MD UVA1</td>
<td>65 J/cm²</td>
<td></td>
</tr>
<tr>
<td>Reynolds et al (2001)</td>
<td>RCT</td>
<td>73</td>
<td>NB UVB</td>
<td>Variable*</td>
<td>NB UVB more effective over 12-wk course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BB UVA</td>
<td>5-15 J/cm²</td>
<td></td>
</tr>
<tr>
<td>Gambichler et al (2009)</td>
<td>Randomized crossover study</td>
<td>28</td>
<td>MD UVA1</td>
<td>50 J/cm²</td>
<td>Both modalities comparably good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NB UVB</td>
<td>Variable*</td>
<td></td>
</tr>
<tr>
<td>Majoe et al (2009)</td>
<td>Randomized half-sided comparison study</td>
<td>13</td>
<td>MD UVA1</td>
<td>Average of 45 J/cm² Variable*</td>
<td>Both modalities equally effective in chronic AD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NB UVB</td>
<td>Variable*</td>
<td></td>
</tr>
<tr>
<td>Tzaneva et al (2010)</td>
<td>Randomized crossover study</td>
<td>40</td>
<td>PUVA</td>
<td>Variable†</td>
<td>PUVA provides better response in severe AD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MD UVA1</td>
<td>70 J/cm²</td>
<td></td>
</tr>
</tbody>
</table>

AD, atopic dermatitis; BB, broadband; HD, high dose; LD, low dose; MD, medium dose; NB, narrowband; PUVA, psoralen plus UVARCT; RCT, randomized control trial; UV, ultraviolet; UVAB, ultraviolet A plus ultraviolet B.

*Based upon minimal erythema dose, with incremental increase.
†Based upon minimal phototoxic dose, with incremental increase.

Vitiligo

Vitiligo produces depigmentation as a result of destruction of melanocytes. Potent topical steroids remain the first-line
treatment for limited areas of vitiligo, but phototherapy should be considered when more than 20% of the body surface area is involved.\textsuperscript{63} Targeted phototherapy sources are an option when <20% body surface area is involved.

PUVA was a mainstay of treatment for vitiligo until 1997 when Westerhof and Nieuweboer-Krobotava reported\textsuperscript{64} the first use of NB UVB in vitiligo. In 1999, guidelines for the treatment of vitiligo were published\textsuperscript{65} and they advocated NB UVB as the first choice therapy for generalized vitiligo in adults and as an alternative therapy, after class-III corticosteroids, in children. This recommendation was supported by a single randomized double-blind trial\textsuperscript{66} comparing PUVA with NB UVB, which showed that NB UVB was superior to PUVA.

There is no universally accepted protocol for the treatment of vitiligo with NB UVB; therefore, protocols differ between studies. A summary of these studies has recently been published.\textsuperscript{32} In general, sessions are performed 2-3 times per week, with doses ranging from 100 to 280 mJ/cm\textsuperscript{2}, with doses stabilized and adjusted for each patient thereafter on the basis of individual response and development of erythema. Patient response to NB UVB therapy has been variable. More than 75% repigmentation has been achieved in 12.5\%\textsuperscript{67} to 75\%\textsuperscript{68} of patients after approximately 6 months to 1 year of treatment. The reason for such variability is unclear; however, proposed causes

---

**Table 3** Studies of UVA1 Phototherapy for Morphea

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Number of Patients</th>
<th>Phototherapy Modality</th>
<th>Dose</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerscher et al (1995)\textsuperscript{12}</td>
<td>Case series</td>
<td>10</td>
<td>LD UVA1</td>
<td>20 J/cm\textsuperscript{2}</td>
<td>&gt;80% lesion clearance</td>
</tr>
<tr>
<td>Stege et al (1997)\textsuperscript{47}</td>
<td>Controlled trial</td>
<td>17</td>
<td>HD UVA1</td>
<td>130 J/cm\textsuperscript{2}</td>
<td>Significant clearance in both groups, HD UVA1 is superior to LD UVA1</td>
</tr>
<tr>
<td>Gruss et al (1997)\textsuperscript{33}</td>
<td>Uncontrolled trial</td>
<td>5</td>
<td>LD UVA1</td>
<td>20 J/cm\textsuperscript{2}</td>
<td>5/5 improved, 3/45 resolved, normal skin thickness</td>
</tr>
<tr>
<td>Kerscher et al (1998)\textsuperscript{46}</td>
<td>Uncontrolled trial</td>
<td>20</td>
<td>LD UVA1</td>
<td>20 J/cm\textsuperscript{2}</td>
<td>Significant clinical improvement</td>
</tr>
<tr>
<td>Gruss (2001)\textsuperscript{49}</td>
<td>Case series</td>
<td>3</td>
<td>LD UVA1</td>
<td>20 J/cm\textsuperscript{2}</td>
<td>Highly effective in plaque clearance</td>
</tr>
<tr>
<td>de Rie et al (2003)\textsuperscript{50}</td>
<td>Controlled trial</td>
<td>8</td>
<td>MD UVA1</td>
<td>48 J/cm\textsuperscript{2}</td>
<td>Overall improved sclerosis</td>
</tr>
<tr>
<td>Kreuter et al (2006)\textsuperscript{51}</td>
<td>Randomized controlled study</td>
<td>27</td>
<td>MD UVA1</td>
<td>50 J/cm\textsuperscript{2}</td>
<td>MD UVA1 is superior to LD UVA1 and NB UVB, LD UVA1 equivalent to NB UVB</td>
</tr>
<tr>
<td>Tuchinda et al (2006)\textsuperscript{52}</td>
<td>Multicenter retrospective study</td>
<td>34</td>
<td>MD UVA1</td>
<td>50-60 J/cm\textsuperscript{2}</td>
<td>Greater clinical improvement in medium and medium to HD UVA1</td>
</tr>
<tr>
<td>Sator et al (2009)\textsuperscript{53}</td>
<td>Randomized controlled trial</td>
<td>16</td>
<td>MD UVA1</td>
<td>70 J/cm\textsuperscript{2}</td>
<td>All improved, no difference between MD and LD UVA</td>
</tr>
<tr>
<td>Suh et al (2010)\textsuperscript{54}</td>
<td>Retrospective study</td>
<td>6</td>
<td>LD UVA1</td>
<td>20 J/cm\textsuperscript{2}</td>
<td>Both effective in complete and partial remission</td>
</tr>
</tbody>
</table>

HD, high dose; LD, low dose; MD, medium dose; NB, narrowband; UV, ultraviolet.
Phototherapy in the age of biologics

Table 4 Studies of UVA Phototherapy for Morphea

<table>
<thead>
<tr>
<th>Authors</th>
<th>Number of Patients</th>
<th>Regimen</th>
<th>Study Type</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>El-Mofty et al (2000)67</td>
<td>15</td>
<td>20 sessions at 20 J/cm²</td>
<td>Controlled trial</td>
<td>Softening of sclerotic lesions (90% cure in early lesions, 50% cure of late lesions)</td>
</tr>
<tr>
<td>El-Mofty et al (2004)58</td>
<td>67</td>
<td>20 sessions at 5, 10, or 20 J/cm²</td>
<td>Randomized control trial</td>
<td>All doses with remarkable softening of sclerotic lesions, no difference between doses</td>
</tr>
<tr>
<td>El-Mofty et al (2004)59</td>
<td>22</td>
<td>20 sessions at 10 or 20 J/cm²</td>
<td>Controlled trial</td>
<td>All improved, 18/22 with moderate or better improvement, 10 J/cm² was equivalent to 20 J/cm²</td>
</tr>
</tbody>
</table>

UVA, ultraviolet A.

Mycosis Fungoides

Mycosis fungoides (MF) is the most common form (approximately 65%) of the cutaneous T-cell lymphomas. MF is characterized by an epidermotropic infiltrate of T lymphocytes with the phenotypic display of mature memory T cells.71 Gilchrest et al72 first reported the efficacy of phototherapy in MF, when they treated 9 patients with PUVA. In this report, all patients responded well to treatment, and complete remission was achieved in 4 patients. Today, the most common forms of phototherapy used in the treatment of MF are PUVA and both NB and BB UVB. Recently, treatment recommendations and reviews have been published that provide a rational approach to MF. It is now commonly accepted that early-stage MF should be treated with skin directed therapies, while systemic and aggressive treatments should be reserved for higher stages (≥IIB), disease progression, or lack of appropriate responses.71,73

PUVA has remained a valuable tool in the treatment of MF over the years owing in part to the large number of clinical trials that have supported its use. A comprehensive list of these studies has been published recently.74 The rate of complete remission with PUVA is estimated to be 90% with stage I, 76% with stage IB, 78% with stage IIA, 59% with stage IIB, and 61% with stage III71,74,75 in general, the protocol for PUVA is similar to that used in psoriasis.76 Bath PUVA is generally not accepted as the head is not exposed to the topical psoralen and this is a likely source of relapse.77 The choice to use maintenance phototherapy after clearance is still controversial. Although maintenance therapy is likely beneficial in preventing relapse, it is well documented that PUVA has been associated with carcinogenesis. Therefore, a practical approach is to reserve maintenance for those patients who show signs of early relapse (<6 months). Currently, there is no agreement on maintenance therapy duration, frequency, UVA dosing, and scheduling, but a practical approach may be once weekly treatments for 3-6 months without dose increments.

The first report of UVB phototherapy in the treatment of MF appeared in 1982.78 A number of studies followed in which authors confirmed the efficacy of UVB in the treatment of MF. A comprehensive list of these studies has been published recently elsewhere.79 Today, NB UVB has largely replaced the use of BB UVB and is the treatment of choice for the management of stage I MF patients according to a recent survey among dermatologists using office-based phototherapy.74 However, there is a lack of studies comparing NB UVB with PUVA. A widely accepted consensus is that patients with patches and thin plaques should be preferentially treated with NB UVB, whereas PUVA should be reserved for thicker plaques. One comprehensive review74 concluded that NB UVB administered 3 times per week or PUVA 2-3 times per week, continued until clearance (most commonly 3-4 months), was an effective regimen in the initial clearing stages of MF. On the basis of the results of one retrospective analysis, it has been proposed that because of its practical advantages, NB UVB might be a reasonable approach to treat early MF. PUVA may then be initiated in cases that fail to respond.80

Table 5 Other Sclerosing Skin Conditions Reported to Improve With UVA

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichen Sclerosis et Atrophicus</td>
</tr>
<tr>
<td>Sclerodermoid GVHD</td>
</tr>
<tr>
<td>Scleredema</td>
</tr>
<tr>
<td>Necrobiosis lipodica</td>
</tr>
<tr>
<td>Nephrogenic systemic fibrosis</td>
</tr>
</tbody>
</table>

GVHD, graft-versus-host disease.
Other Uses of Phototherapy

Other skin disorders that may be responsive to UVA, UVB, and PUVA are listed in Table 6.

Phototherapy in Children

The use of phototherapy in children is limited by concern about long-term carcinogenesis and photoaging. Conversely, it is important to avoid exposing children to the risks of prebiologics and biologics whenever possible because of their potential risks, which include infection, malignancy, bone marrow suppression, and renal toxicity. Thus, many have considered phototherapy to be a safe alternative in children requiring more than topical agents to control their disease. Pavlovsky et al recently published one of the largest retrospective studies to date on the use of NB UVB in the pediatric population for psoriasis and AD. Their report included results from 129 children followed during an 8-year period, concluding that this was a viable therapeutic option that should be used with caution in a carefully selected population. Another recent 15-year prospective study evaluating the use of NB UVB phototherapy in 116 children determined it to be an effective and well-tolerated treatment, with most children only needing a single course. As with all patients who receive phototherapy, parents should be counseled on sun protection, sunscreen use, sun avoidance, and the need for regular skin examinations.

Side Effects and Contraindications

One of the primary advantages of UV phototherapy as compared to systemic steroids, biologics, or other immnosuppressive medications, is its relative safety and lack of side effects. Nonetheless, reported side effects range from mild to severe and should be considered before a patient begins UV phototherapy.

NB UVB is safe in almost any patient regardless of comorbidity, including children and pregnant women. Acute adverse side effects during NB UVB treatment are infrequent. Of those reported, the most common are erythema, pruritus, and xerosis, which typically resolve after topical emollients. Chronic adverse effects include photoaging and possibly photocarcinogenesis (although studies to date have failed to identify significantly increased risk).

Patients treated with UVA1 most commonly report no side effects other than tanning and, less commonly, erythema and pruritus. UVA1 has been reported to cause a polymorphic light eruption and activation of herpes simplex infection. The side effects of the psoralen, 8-MOP, used in PUVA therapy, include nausea and gastrointestinal upset. One strategy for reducing the side effects of 8-MOP–induced nausea is to decrease the dose and compensate by increasing the dose of UVA by the same percentage. 8-MOP may also be substituted with 5-MOP, which is relatively equivalent in efficacy and produces fewer side effects. As mentioned previously, bath PUVA carries some inconveniences as compared with oral psoralen therapy. Despite these inconveniences, bath PUVA is preferential in patients with limited treatment areas, such as the hands and feet, and may also be considered in patients who would otherwise have difficulty in tolerating oral psoralen (when facilities are available). In addition, some patients treated with PUVA complain of a painful, burning itch that may persist for months after treatment. Currently, PUVA is the only phototherapeutic modality definitively linked with the development of melanoma and nonmelanoma skin cancer in white patients.

Various factors modulate the risk of carcinogenesis in each patient before any exposure to phototherapy. These factors include Fitzpatrick skin type, preexisting actinic damage, age, and personal habits and behavior (extensive outdoor exposure, tanning bed use). These elevate the baseline risk for carcinogenesis for each patient and therefore, additional exposure to further risk is clearly contraindicated.

Conclusions

Phototherapy represents an excellent option in several therapeutically challenging disorders by providing effective therapy without systemic side effects. Although most commonly
associated with the treatment of psoriasis, phototherapy is a valuable tool in the treatment of a large number of skin disorders, many of which are disabling or have significant impact on life quality. This makes phototherapy relevant to modern dermatologic practice, even in the age of biological therapy. Further, the advent of more sophisticated devices using limited UV wavelengths or delivering targeted phototherapy continues to expand the role of this modality.

References

44. Gambichler T, Othlinghaus N, Tomi NS, et al: Medium-dose ultraviolet


