Efinaconazole Solution 10%: Topical Antifungal Therapy for Toenail Onychomycosis

Antonella Tosti, MD

Practice Points

- Toenail onychomycosis is a common disease with limited treatment options, as treatment failures and relapses frequently are encountered.
- Many patients experience long-term disease that affects multiple toenails and causes substantial discomfort and pain.
- Although many patients prefer topical therapies, treatment efficacy with ciclopirox and amorolfine lacquers has been disappointing.

Toenail onychomycosis is a common disease with limited treatment options, as treatment failures and relapses frequently are encountered. Many patients experience long-term disease that affects multiple toenails and causes substantial discomfort and pain. Although many patients prefer topical therapies, treatment efficacy with ciclopirox and amorolfine lacquers has been disappointing.

Efinaconazole solution 10% is a new triazole antifungal agent specifically developed for the treatment of onychomycosis. Efinaconazole has shown a broad spectrum of antifungal activity in vitro and is more potent than ciclopirox against common onychomycosis pathogens. It has lower keratin binding and quicker drug release from keratin than ciclopirox and amorolfine and exhibits remarkably greater in vivo activity. Efinaconazole has limited or no potential for drug interactions and a low resistance potential. Efinaconazole provides a viable alternative to oral therapy for the treatment of toenail onychomycosis.

Onychomycosis, most frequently seen in toenails, is a common growing problem in dermatology practice and can be difficult to treat. It is not self-healing; rather it often is the source of more widespread disease. Onychomycosis can have a substantial impact on the patient and also can spread to his/her family members. Toenail appearance is a real concern, as it can negatively impact the patient's quality of life and occasionally can result in remarkable pain and discomfort. Many patients have long-term disease that can affect several toenails. Although the true burden of the disease is unknown, the patient's desire to cure his/her affected nails is clear. The objective of this article is to briefly review onychomycosis and current treatment options as well as to provide an overview of a new topical treatment, efinaconazole solution 10%.

Overview of Onychomycosis

Onychomycosis usually is caused by dermatophyte fungi (Trichophyton rubrum and Trichophyton mentagrophytes in 80%–90% of cases) but can be caused by nondermatophyte fungi, mainly...
Scopulariopsis brevicaulis, Fusarium species, or Aspergillus species. Nondermatophyte infections are increasingly prevalent in some countries, particularly in Europe and South America.12

Distal lateral subungual onychomycosis (DLSO) is the most common form of toenail onychomycosis in which the fungus, usually T rubrum, invades the nail bed at the distal and lateral edges.13 Hyperkeratosis occurs under the nail, resulting in detachment from the nail bed and subungual thickening. Some degree of tinea pedis almost always is present.19 Other clinical types include superficial onychomycosis (white or black), originating on the superficial nail plate or beneath the proximal nail fold and resulting in a powdery white, patchy discoloration of the nail surface or transverse striae with severity and spread from a complex host-parasite relationship15; proximal subungual onychomycosis with invasion through the proximal margin embedded within the proximal nail fold, resulting in the infection slowly extending distally (commonly coexists with immunodeficiency); endonyx onychomycosis with lamellar splitting of the nail, discoloration, and internal invasion of the nail plate; and total dystrophic onychomycosis, the end stage commonly seen in DLSO in which the nail plate crumbles away and the nail bed becomes thickened, ridged, and often covered with debris.14 Two additional classifications—mixed pattern onychomycosis and onychomycosis secondary to other nail disease—also have been proposed.13

Treatment options are limited both in the number of available agents and their low to moderate efficacy. Treatment selection depends on the disease type, the number of affected nails, and the severity of nail involvement.16 The proximity of the infection to the nail matrix, degree of subungual hyperkeratosis, and presence of dermatophytoma are important considerations when assessing disease severity and selecting therapy.17

Relapse and reinfection are common, occurring in 20% to 25% of cases; therefore, new therapeutic options are needed.18 Current treatments range from topical care with no systemic side effects but limited efficacy to systemic treatments that are more effective but can be limited in some patients due to drug-drug interactions (DDIs) and safety concerns, most notably hepatotoxicity.19,20 In some cases, topical treatments and nail avulsion21 may be combined with oral antifungals to decrease adverse effects and duration of therapy.22

Topical therapy is used in mild to moderate DLSO, in initial treatment of classic superficial onychomycosis,18 and in patients cured with systemic therapy to prevent recurrence.23 Although many patients may prefer topical treatments, results with ciclopirox and amorolfine lacquers (amorolfine lacquer is not available in the United States) have been disappointing, probably due to limited penetration through the diseased nail.24,25 Efinaconazole solution 10% is a triazole antifungal agent specifically developed for topical treatment of mild to moderate DLSO.26,27

Nonclinical Development

A topical antifungal must penetrate through the dense keratinized nail plate into the deeper nail layers and nail bed and be present in its free form to be effective. Keratin binding can reduce the availability of the free active drug.28,29 Antifungal drugs possess a high affinity to keratin that can have a deleterious effect on efficacy.30 Keratin binding also can decrease drug penetration to the deeper nail layers, even after repeated topical application. Although keratin binding can result in persistent drug concentrations in the nail, it is only beneficial if the drug is released at a sufficient concentration and rate so as not to compromise efficacy.

Although in vitro and in vivo fungicidal activities are not necessarily predictive of clinical outcome, they are important indicators of therapeutic success. With the greater emergence of nondermatophytes and yeast in onychomycosis, a broad spectrum of activity is ideal.

Pharmacokinetic Profile

Topical efinaconazole 10% is a clear, low-surface-tension solution. Its low systemic exposure means that DDIs are unlikely.31 Two single-center, open-label studies of healthy participants and participants with severe onychomycosis assessed the DDI potential of efinaconazole by characterizing its pharmacokinetic profile and systemic exposure. Topical application of efinaconazole solution 10% resulted in low systemic exposures to efinaconazole in patients with severe onychomycosis as well as healthy participants.32 The likelihood of an in vivo DDI with efinaconazole was considered remote, especially because efinaconazole is highly plasma protein bound and the model (validated LC-MS/MS method) takes into account both free and bound forms.31

Mechanism of Action and Unique Physicochemical Properties

The unique physicochemical properties of efinaconazole and the nature of its vehicle formulation are important contributors to its clinical success. Efinaconazole is a triazole antifungal agent (Figure 1) that inhibits fungal lanosterol 14α demethylase involved in ergosterol biosynthesis at concentrations below its minimum inhibitory concentration (MIC). Efinaconazole
is 4.8 times more potent in *T mentagrophytes* than itraconazole and 7.3 times more potent in *Candida albicans* than clotrimazole.\(^3\)\(^3\)

Efinaconazole solution 10% showed a considerably lower keratin-binding rate and faster drug release after 5 washings (85.7% bound with 46% released) when compared to amorolfine (98.1% bound with 6.9% released) and ciclopirox (99.3% bound with 2.4% released). Keratin affinity influences drug permeation and was much greater with efinaconazole solution 10% than ciclopirox; amorolfine was not detectable.\(^3\)\(^2\)

Broad-Spectrum In Vitro and Superior Activity In Vivo

Efinaconazole demonstrated more potent antifungal activity in vitro against *T rubrum* and *T mentagrophytes* (MIC\(_{90}\), 0.008–0.015 μg/mL) and *C albicans* (MIC\(_{90}\), 0.004 μg/mL), compared to currently marketed onychomycosis antifungals,\(^3\)\(^4\) against *T rubrum* and *T mentagrophytes*, efinaconazole had comparable activity to amorolfine and terbinafine (1- to 4-fold) and higher activity than ciclopirox and amorolfine; amorolfine was not detectable.\(^3\)\(^2\)

Efinaconazole solution 10% was significantly superior to amorolfine (P<.001) and ciclopirox (P<.01) nail lacquers in decreasing the number of dermatophytes in an in vivo guinea pig model of onychomycosis.\(^3\)\(^2\) In vitro studies suggested low potential for antibiotic resistance.\(^3\)\(^4\)\(^3\)\(^5\)

Nonclinical Toxicology

Efinaconazole and efinaconazole solution 10% were well tolerated following chronic dosing in rats via subcutaneous injection and minipigs via dermal application, respectively; only minor vehicle-related skin toxicity was observed in minipigs.\(^3\)\(^6\) There was no systemic toxicity at plasma efinaconazole exposures of at least 70-fold higher than in onychomycosis patients.\(^3\)\(^7\) Efinaconazole was not mutagenic or clastogenic in vitro and in vivo assays and was not oncogenic in a 2-year dermal carcinogenicity study in mice.\(^3\)\(^6\)

Efinaconazole elicits “azole class effect” embryofetal and early postnatal mortality at high, maternally toxic doses. There is no evidence that efinaconazole is teratogenic, unlike some other antifungal agents, or that it affects fertility.\(^3\)\(^6\)

Clinical Studies

Two identical 52-week, prospective, multicenter, randomized, double-blind studies of 1655 participants (age range, 18–70 years) assessed the safety and efficacy of efinaconazole solution 10% in the treatment of toenail onychomycosis. Participants had mild to moderate toenail DLSO (20%–50% clinical involvement of the target toenail).\(^2\)\(^7\)

For study 1, complete cure rates at week 52 were 17.8% (117/656) with efinaconazole solution 10% and 3.3% (7/214) with vehicle (P<.001); for study 2, complete cure rates were 15.2% (88/580) and 5.5% (11/201), respectively (P<.001) (Table 1)(Figure 2).\(^2\)\(^7\) Mycologic cure rates (combined for both studies) at week 52 were 54.4% (672/1236) with efinaconazole solution 10% compared to 16.9% (70/415) with vehicle (P<.001)(Table 2).

More participants treated with efinaconazole solution 10% (25.0% [309/1236]) achieved complete or almost complete cure compared to vehicle (7.2% [30/415]) (P<.001)(Table 2). More than 40% (527/1236) of participants treated with efinaconazole solution 10% were considered treatment successes compared to 16.1% (67/415) with vehicle (P<.001)(Table 2).\(^2\)\(^7\)

Related adverse events reported within 48 weeks of treatment and in at least 1% of participants treated with efinaconazole solution 10% or vehicle in both studies are shown in Table 3.\(^3\)\(^8\) In general, these adverse events were mild and transient and did not lead to study discontinuation.\(^2\)\(^7\)

Conclusion

Onychomycosis is a chronic progressive disease with a high prevalence and burden of illness. There is a
Table 1.
Complete Cure With Efinaconazole Solution 10% (Intention-to-Treat Population)

<table>
<thead>
<tr>
<th>Study 1</th>
<th>Study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efinaconazole Solution 10% (n=656)</td>
<td>Vehicle (n=214)</td>
</tr>
<tr>
<td>Complete cure at week 52, n (%)</td>
<td>117 (17.8)</td>
</tr>
</tbody>
</table>

Data from Elewski et al.27

Table 2.
Combined Secondary Efficacy Results With Efinaconazole Solution 10% (Intention-to-Treat Population)

<table>
<thead>
<tr>
<th></th>
<th>Efinaconazole Solution 10% (n=1236)</th>
<th>Vehicle (n=415)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycologic cure, a n (%)</td>
<td>672 (54.4)</td>
<td>70 (16.9)</td>
</tr>
<tr>
<td>Complete or almost complete cure, b n (%)</td>
<td>309 (25.0)</td>
<td>30 (7.2)</td>
</tr>
<tr>
<td>Treatment success, c n (%)</td>
<td>527 (42.6)</td>
<td>67 (16.1)</td>
</tr>
</tbody>
</table>

aMycologic cure is defined as negative potassium hydroxide examination and negative fungal culture of the target nail specimen.
bA complete or almost complete cure is defined as ≤5% affected target nail area in addition to mycologic cure.
cTreatment success is defined as ≤10% affected target nail area.

Data from Elewski et al.27

Figure 2. Primary efficacy end point (complete cure) over 52 weeks in study 1 (A) and study 2 (B). Asterisk indicates P<.001. Adapted from the Journal of the American Academy of Dermatology, Copyright 2013, with permission from Elsevier.
real medical need for an effective topical treatment. Efinaconazole solution 10% is a new triazole antifungal specifically developed for the topical treatment of mild to moderate DLSO, the most common presentation of onychomycosis.

Efinaconazole has a broad spectrum of antifungal activity in vitro and is more potent in vivo than ciclopirox and amorolfine against common onychomycosis pathogens. As a result, efinaconazole solution 10% should be ideally suited for topical treatment of dermatophyte, nondermatophyte, and mixed infections.

Successful topical treatment of onychomycosis has been a challenge. Reported mycologic (32%) and complete cure (7.5%) rates with ciclopirox have been disappointing.24

The physicochemical properties of the uniquely formulated efinaconazole solution 10% undoubtedly contribute to its efficacy in the topical treatment of onychomycosis. Efinaconazole solution 10% provides a viable alternative to oral therapy. Mycologic and complete cure rates are comparable to those seen with oral itraconazole and have been shown to be 2- to 3-fold greater than those reported with ciclopirox lacquer.24

Acknowledgment—The author would like to thank Brian Bulley, MSc, of Inergy Limited, Lindfield, West Sussex, England, for his assistance with the preparation of the manuscript. Medicis, a division of Valeant Pharmaceuticals North America LLC, funded Inergy Limited’s activities pertaining to this manuscript.

REFERENCES

