Point-of-care ultrasound: Coming soon to primary care?

With a little training, FPs can successfully use point-of-care ultrasound for various cardiac, pulmonary, and vascular assessments.

Point-of-care ultrasound (POCUS) has been gaining greater traction in recent years as a way to quickly (and cost-effectively) assess for conditions including systolic dysfunction, pleural effusion, abdominal aortic aneurysms (AAAs), and deep vein thrombosis (DVT). It involves limited and specific ultrasound protocols performed at the bedside by the health care provider who is trying to answer a specific question and, thus, help guide treatment of the patient.

POCUS was first widely used by emergency physicians starting in the early 1990s with the widespread adoption of the Focused Assessment with Sonography in Trauma (FAST) scan. Since that time, POCUS has expanded beyond trauma applications and into family medicine.

One study assessed physicians’ perceptions of POCUS after its integration into a military family medicine clinic. The study showed that physicians perceived POCUS to be relatively easy to use, not overly time consuming, and of high value to the practice. In fact, the literature tells us that POCUS can help decrease the cost of health care and improve outcomes, while requiring a relatively brief training period.

If residencies are any indication, POCUS may be headed your way

Ultrasound units are becoming smaller and more affordable, and medical schools are increasingly incorporating ultrasound curricula into medical student training. As of 2016, only 6% of practicing FPs reported using non-obstetric POCUS in their practices. Similarly, a survey from 2015 reported that only 2% of family medicine residency programs had established POCUS curricula. However, 50% of respondents in the 2015 survey reported early-stage development or interest in developing a POCUS curriculum.

Since then a validated family medicine residency curriculum has been published, and the American Academy of Family Physicians (AAFP) recently released a POCUS Curriculum Guideline for residencies (https://www.aafp.org/dam/AAFP/documents/medical_education_residency/program_directors/Reprint290D_POCUS.pdf).

The potential applications of POCUS in family medicine are numerous and have been reviewed in several recent publications. In this article, we will review the evidence for the use of POCUS in 4 areas: the cardiovascular exam (FIGURES 1 and 2), the lung exam (FIGURES 3-6), the screening exam for AAAs (FIGURE 7), and the evaluation for DVT (FIGURES 8 and 9). (Obstetric and musculoskeletal applications have been sufficiently covered elsewhere.) For all of these applications, POCUS is safe, accurate, and beneficial and can be performed with a relatively small amount of training by non-radiology specialists, including FPs (TABLES 1 and 2).
Just 2 hours of cardio POCUS training enhanced Dx accuracy

The American Society of Echocardiography (ASE) issued an expert consensus statement for focused cardiac ultrasound in 2013. The guideline supports non-cardiologists utilizing POCUS to assess for pericardial effusion and right and left ventricular enlargement, as well as to review global cardiac systolic function and intravascular volume status. Cardiovascular POCUS protocols are relatively easy to learn; even small amounts of training and practice can yield competency.

For example, a 2013 study showed that after 2 hours of training with a pocket ultrasound device, medical students and junior physicians inexperienced with POCUS were able to improve their diagnostic accuracy for heart failure from 50% to 75%. In another study, internal medicine residents with limited cardiac ultrasound training (ie, 20 practice exams) were able to detect decreased left ventricular ejection fraction using a handheld ultrasound device with 94% sensitivity and specificity in patients admitted to the hospital with acute decompensated heart failure. Similarly, after only 8 hours of training, a group of Norwegian general practitioners were able to obtain measurements of systolic function with a pocket ultrasound device that were not statistically different from a cardiologist’s measurements.

In another study, rural FPs attended a 4-day course and then performed focused cardiac ultrasounds on primary care patients with a clinical indication for an echocardiogram. The scans were uploaded to a Web-based program for remote interpretation by a cardiologist. There was high concordance between the FPs’ interpretations of the focused cardiac ultrasounds and the cardiologist’s interpretations. Only 32% of the patients in the study group required a formal follow-up echocardiogram.

Kimura et al published a POCUS protocol for the rapid assessment of patients with heart failure, called the Cardiopulmonary Limited Ultrasound Exam (CLUE). The CLUE protocol utilizes 4 views to assess left ventricular systolic and diastolic function along with signs of pulmonary edema or systemic volume overload (TABLE 3). The presence of pulmonary edema or a plethoric inferior vena cava (IVC) was highly prognostic of in-hospital mortality. The CLUE protocol has been successfully used by novices including internal medicine residents after brief training (ie, up to 60 supervised scans) and can be performed in less than 5 minutes.

Point-of-care ultrasound is safe, accurate, and beneficial and can be performed with a relatively small amount of training by family physicians.
Inpatient use. In addition to its use as an outpatient diagnostic tool, POCUS may be able to help guide therapy in patients admitted to the hospital with heart failure. Increasing collapse of the IVC directly correlates with the amount of fluid volume removed during hemodialysis. Goonewardena et al showed that IVC collapsibility was an independent predictor of 30-day hospital readmission even when demographics, signs and symptoms, and volume of diuresis were otherwise equal. However, whether the use of IVC collapsibility to guide management improves outcomes in heart failure remains to be validated in a prospective trial.

More sensitive, specific than x-rays for pulmonary diagnoses

The chest x-ray has traditionally been the imaging modality of choice to evaluate primary care pulmonary complaints. However, POCUS can be more sensitive and specific than a chest x-ray for evaluating several pulmonary diagnoses including pleural effusion, pneumonia, and pulmonary edema.

Pleural effusion can be difficult to detect with a physical exam alone. A systematic review showed that the physical exam is not sensitive for effusions <300 mL and can have even lower utility in obese patients. While an upright lateral chest x-ray can accurately detect effusions as small as 50 mL, portable x-rays have sensitivities of only 53% to 71% for small- or moderate-sized effusions. Ultrasound, however, has a sensitivity of 97% for small effusions.

A 2016 meta-analysis showed that POCUS had a pooled sensitivity and specificity of 94% and 98%, respectively, for pleural effusions, while chest x-ray had a pooled sensitivity and

TABLE 1
These videos show how to perform POCUS examinations*

Introduction to echocardiography	https://youtu.be/JMocr_oZ1Jo
Parasternal long-axis view	https://youtu.be/mZtK4PmdacE
Ultrasound of the IVC	https://youtu.be/Q6VG3kvZBY
Overview of lung ultrasound	https://youtu.be/VOiz8-km6hE
Evaluation of the abdominal aorta	https://youtu.be/8EB0Aul3xAM
Limited examination of the lower extremity venous system for DVT	https://youtu.be/M0ImjOOg10M

DVT, deep vein thrombosis; IVC, inferior vena cava.

*Provided by the University of South Carolina School of Medicine Ultrasound Institute.

TABLE 2
Point-of-care ultrasound: How accurate? How much training?

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Training requirement</th>
<th>Time required to perform protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation for left ventricular systolic function (compared with expert sonography)</td>
<td>69%-94%</td>
<td>91%-94%</td>
<td>8 hours of training or 20 practice exams</td>
<td>*</td>
</tr>
<tr>
<td>Evaluation of IVC to determine volume status and predict readmission for CHF</td>
<td>81%</td>
<td>72%</td>
<td>4 hours of training and 20 practice exams</td>
<td>*</td>
</tr>
<tr>
<td>Evaluation for pleural effusion (compared with CT or expert sonography)</td>
<td>94%</td>
<td>98%</td>
<td>3 hours of training</td>
<td>*</td>
</tr>
<tr>
<td>Evaluation for pneumonia (compared with x-ray or CT)</td>
<td>90%-96%</td>
<td>88%-93%</td>
<td>3 hours of training</td>
<td>*</td>
</tr>
<tr>
<td>Evaluation for pulmonary edema (compared with final diagnosis by blinded chart review)</td>
<td>86%-100%</td>
<td>92%-98%</td>
<td>5 practice exams</td>
<td>*</td>
</tr>
<tr>
<td>Screening exam for AAA (compared with expert sonography)</td>
<td>100%</td>
<td>100%</td>
<td>50 practice exams</td>
<td><4 minutes</td>
</tr>
<tr>
<td>Evaluation for proximal leg DVT (compared with expert sonography)</td>
<td>95%</td>
<td>96%</td>
<td>10 minutes to 5 hours of training</td>
<td><4 minutes</td>
</tr>
</tbody>
</table>

AAA, abdominal aortic aneurysm; CHF, congestive heart failure; CT, computed tomography; DVT, deep vein thrombosis; IVC, inferior vena cava.

*Time required to perform was not evaluated for these protocols in the literature that was reviewed.
FIGURE 1
Parasternal long-axis view of the heart in early diastole

In this patient with normal findings, the anterior (top in image) leaflet of the mitral valve can be seen within 1 cm of the interventricular septum. The left atrium is about the same diameter as the aortic root.

Ao, aortic root; IVS, interventricular septum; LA, left atrium; LV, left ventricle; MV, anterior leaflet of the mitral valve; RV, right ventricle.

FIGURE 2
Abnormal parasternal long-axis view of the heart in early diastole

The anterior (top in image) leaflet of the mitral valve is not seen within 1 cm of the interventricular septum. The left atrium is clearly larger in diameter than the aortic root. This image is positive for decreased left ventricular ejection fraction and left atrial enlargement.

Ao, aortic root; IVS, interventricular septum; LA, left atrium; LV, left ventricle; MV, anterior leaflet of the mitral valve; RV, right ventricle.

FIGURE 3
Normal lung A lines

This view shows 2 ribs with posterior shadows flanking a pleural line with horizontal line artifacts repeating towards the bottom of the image. These A lines are observed with normal aerated lung.

FIGURE 4
Abnormal lung B lines

This view shows 2 ribs with posterior shadows flanking a pleural line with comet tail-like artifacts starting at the pleura and extending to the bottom of the image. More than 3 per intercostal space can be seen. These B lines are observed with interstitial thickening, as occurs with pulmonary edema.
specificity of 51% and 91%, respectively, when compared with computed tomography (CT) and expert sonography. POCUS evaluation for pleural effusion is technically simple, and at least one study showed that even novice users can achieve high diagnostic accuracy after only 3 hours of training.

Pneumonia is the eighth leading cause of death in the United States and the single leading cause of infectious disease death in children worldwide. Pneumonia is a difficult diagnosis to make based on a history and physical examination alone, and the Infectious Diseases Society of America recommends diagnostic imaging to make the diagnosis.

The adult and pediatric literature clearly demonstrate that lung ultrasound is accurate at diagnosing pneumonia. In a 2015 meta-analysis of the pediatric literature, lung ultrasound had a sensitivity of 96% and a specificity of 93% and positive and negative likelihood ratios of 15.3 and 0.06, respectively. In adults, a 2016 meta-analysis of lung ultrasound showed a pooled sensitivity and specificity of 90% and 88%, respectively, with positive and negative likelihood ratios of 6.6 and 0.08, respectively.

In 2015, a prospective study compared the accuracy of lung ultrasound and chest x-ray using CT as the gold standard. Lung ultrasound had a significantly better sensitivity of 82% compared to a sensitivity of 64% for chest x-ray. Specificities were comparable at 94% for ultrasound and 90% for chest x-ray.
At least one study found novice sonographers to be accurate with lung POCUS for the diagnosis of pneumonia after only two 90-minute training sessions. Moreover, ultrasound has a more favorable safety profile, greater portability, and lower cost compared with chest x-ray and CT.

- **Pulmonary edema.** Lung ultrasound can identify interstitial pulmonary edema via artifacts called B lines, which are produced by the reverberation of sound waves from the pleura due to the widening of the fluid-filled interlobular septa. These are distinctly different from the A-line pattern of repeating horizontal lines that is seen with normal lungs, making lung ultrasound more accurate than chest x-ray for identification of pulmonary edema. When final diagnosis via blinded chart review is used as the reference standard, bilateral B lines on a lung ultrasound image have a sensitivity of 86% to 100% and a specificity of 92% to 98% for the diagnosis of pulmonary edema compared to chest x-ray’s sensitivity of 56.9% and specificity of 89.2%. There is also a linear correlation between the number of B lines present and the extent of pulmonary edema. The number of B lines decreases in real time as volume is removed in dialysis patients.

POCUS evaluation for B lines can be learned very quickly. Exams of novices who have performed only 5 prior exams correlate highly with those of experts who have performed more than 100 exams.

Simple, efficient screening method for abdominal aortic aneurysm

AAAs are present in up to 7% of men over the age of 50. The mortality rate of a ruptured AAA is as high as 80% to 95%. There is, however, a long prodromal period when interventions can make a significant difference, which is why accurate screening is so important.

AAA screening with ultrasound has been shown to decrease mortality. The current recommendation of the US Preventive Services Task Force (USPSTF) is a one-time AAA screening for all men ages 65 to 75 years who have ever smoked (Grade B). Despite the recommendations of the USPSTF, screening rates are low. One study found that only 9% of eligible patients in primary care practices received appropriate screening.

Ultrasound performed by specialists is known to be an excellent screening test for AAA with a sensitivity of 98.9% and a specificity of 99.9%. POCUS use by emergency medicine physicians for the evaluation of symptomatic AAA is well established in the literature. A meta-analysis including 7 studies and 655 patients showed a pooled sensitiv-
Multiple studies also support primary care physicians performing POCUS AAA screening in the clinic setting. For example, a 2012 prospective, observational study performed in Canada compared office-based ultrasound screening exams performed by a rural FP to scans performed in the hospital on the same patients. The physician completed 50 training examinations. The average discrepancy in aorta diameters between the 2 was only 2 mm, which is clinically insignificant, and the office-based scans had a sensitivity and specificity of 100%.

Similarly, a second FP study performed in Barcelona, showed that an FP who performed POCUS AAA screening had 100% concordance with a radiologist. Additionally, POCUS screening for AAA was not time consuming; it was performed in under 4 minutes per patient.

Ruling out DVT
DVT is a relatively rare occurrence in the ambulatory setting. However, patients who present with a painful, swollen lower extremity are much more common, and DVT must be considered and ruled out in these situations. Although isolated distal DVTs that occur in the calf veins are usually self-limited and have a very low risk of embolization, they can progress to proximal DVTs of the thigh veins up to 20% of the time. Similarly, thrombophlebitis of the superficial lower extremity veins rarely embolizes, but can progress to a proximal DVT, especially if large segments are involved or if the segments are within 5 cm of the junction to the deep venous system. The risk of missing a proximal leg DVT is high because embolization occurs up to 60% of the time if the DVT is left untreated.

The current standard for diagnosis of DVT is the lower extremity Doppler ultrasound examination, but obtaining same-day Doppler evaluations can be difficult in the ambulatory setting. In these instances, the American College of Chest Physicians (ACCP) recommends that even low-risk patients receive anticoagulation pending the evaluation if it cannot be obtained in the first 24 hours. This approach not only increases the cost of care, but also exposes patients—many of whom will not be diagnosed with thrombosis in the end—to the risks of anticoagulation.

TABLE 3

Use the CLUE protocol to assess patients with heart failure

<table>
<thead>
<tr>
<th>Finding</th>
<th>Assessment</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular ejection fraction decreased</td>
<td>Positive if in a parasternal long-axis view of the heart, the anterior mitral valve leaflet does not appear to come within 1 cm of the interventricular septum during diastole</td>
<td>69%</td>
<td>91%</td>
</tr>
<tr>
<td>Left atrial enlargement</td>
<td>Positive if in a parasternal long-axis view of the heart, the left atrial diameter is visually estimated to be greater than the aortic root diameter</td>
<td>75%</td>
<td>72%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finding</th>
<th>Assessment</th>
<th>Odds ratio of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated central venous pressure</td>
<td>Positive if a long-axis view of the inferior vena cava shows parallel walls that collapse <50% with inspiration</td>
<td>6.36</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>Positive if ≥3 comet tail artifacts are visualized at the anterior apical lung fields bilaterally</td>
<td>5.3</td>
</tr>
</tbody>
</table>

CONTINUED
D-dimer blood tests have drawbacks, too. While a negative high-sensitivity D-dimer blood test in a patient with a low pre-test probability of DVT can effectively rule out a DVT, laboratory testing is not always immediately available in the ambulatory setting either. Additionally, false-positive rates are high, and positive D-dimer exams still require evaluation by Doppler ultrasound.

Given these limitations, performing an ultrasound at the bedside or in the exam room can allow for more timely and cost-effective care. In fact, research shows that a limited ultrasound, called the 2-region compression exam, which follows along the course of the common femoral vein and popliteal vein only, ignoring the femoral and calf veins, is highly accurate in assessing for proximal leg DVTs. As such, it has been adopted for POCUS use by emergency medicine physicians.

Multiple studies show that physicians with minimal training can perform the 2-region compression exam with a high degree of accuracy when full-leg Doppler ultrasound was used as the gold standard. In these studies, hands-on training times ranged from only 10 minutes to 5 hours, and the exam could be performed in less than 4 minutes. A systematic review of 6 studies comparing emergency physician-performed ultrasound with radiology-performed ultrasound calculated an overall sensitivity of 0.95 (95% CI, 0.87-0.99) and specificity of 0.96 (95% CI, 0.87-0.99) for those performed by emergency physicians.

The main concern with the 2-region compression exam is that it can miss a distal leg DVT. As stated earlier, distal DVTs are relatively benign and tend to resolve without treatment; however, up to 20% can progress...
to become a dangerous proximal leg DVT.68 Researchers have validated several methods by prospective trials to address this limitation.

Specifically, researchers have demonstrated that patients with a low pre-test probability of DVT per the Wells scoring system could have DVT effectively ruled out with a single 2-region compression ultrasound without further evaluation.66 In another study, researchers evaluated all patients (regardless of pretest probability) with a 2-point compression exam and found that those with negative exams could be followed with a second exam in 7 to 10 days without initiating anticoagulation. If the second one was negative, no further evaluation was needed.67,68

And finally, researchers demonstrated that a negative 2-point compression ultrasound in combination with a concurrent negative D-dimer test was effective at ruling out DVT, regardless of pre-test probability.69,70

A preferred approach

Given this data and the fact that in the ambulatory setting it is often easier and faster to perform a 2-region compression examination than to obtain a D-dimer laboratory test or a formal full-leg Doppler ultrasound, what follows is our preferred approach to a patient with suspected DVT in the outpatient setting (FIGURE 10).

We first assess pre-test probability using the Wells scoring system. We then perform the 2-region compression ultrasound. If the patient has low pre-test risk according to the Wells score, we rule out DVT. If the patient has moderate or high risk with a negative 2-region compression ultrasound, the patient gets a D-dimer test. If the D-dimer test is negative, we rule out DVT. If the D-dimer test is positive, we schedule the patient for a repeat 2-region compression ultrasound in 7 to 10 days. If at any time the 2-region compression evaluation is positive, we treat the patient for DVT.

References

25. Kimura BJ, Shaw DJ, Amundson SA, et al. Cardiac limited ultra-
sound examination techniques to augment the bedside cardiac physical examination. J Ultrasound Med. 2015;34:1803-1809.

